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Abstract

The dynamics of the non-commutative Landau problem (NCLP) and the system of two point
vortices are studied, identifying three different phases in both systems. A correspondence in the
phases, sub-critical (non-chiral), super-critical (chiral) and critical between the two systems is
established. As a result, a trivial permutation symmetry of the point vortices induces a weak-
strong coupling duality in the NCLP.

We introduce a linear combination of angular momentum integral and Hamiltonian together
with a two component object obtained by space reflection. These elements allowed us to generate
quantum sub-critical and super-critical phases of both systems from a two-dimensional quantum
free particle or a quantum vortex-antivortex system by applying conformal bridge transformation
to latter systems. The composition of the inverse and direct transformations of the conformal
bridge also makes it possible to link the non-chiral and chiral phases in each of these two systems.



Resumen

Se estudia la dinámica del problema de Landau no conmutativo (NCLP) y el sistema de dos
vórtices puntuales, identificándose tres fases diferentes en ambos sistemas. Se establece una
correspondencia en las fases, subcrítica (no quiral), supercrítica (quiral) y crítica entre los sistemas
mencionados. Como resultado, una simetria de permutación trivial de los vórtices puntuales
induce una dualidad de acoplamiento débil-fuerte en el NCLP.

Introducimos una combinación lineal de integral de momento angular y Hamiltoniano junto con
un objeto de dos componentes obtenido por reflexión espacial. Estos elementos nos permitieron
generar fases cuánticas subcríticas y supercríticas de ambos sistemas a partir de una partícula
libre cuántica bidimensional o un sistema cuántico vórtice-antivórtice aplicando transformación
de puente conforme a estos últimos sistemas. La composición de transformaciones inversas y
directas del puente conforme también hace posible vincular las fases no quiral y quiral en cada
uno de estos dos sistemas.
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1. Introduction

Symmetries play an essential role in physics. They are useful tools to describe particular config-
urations or special properties of a system. They can also be used as guiding tools for building
theories. General relativity and the Standard model are two examples.

An important symmetry to be cited is the conformal symmetry which throughout history ac-
quired more importance and significance. Conformal invariance was first introduced into physics
by Cunningham and Batman. They showed that Maxwell’s equations are covariant not only under
10-parameter Lorentz group but under the larger 15-parameter conformal group [1].

[Mµν ,Mρσ] = iηµρMνσ + iηνσMµρ − iηµσMνρ − iηνρMµσ ,

[Mµν , Pρ] = iηµρPν − iηνρPµ ,

[Pµ, Pν ] = 0 ,

[Pµ, D] = iPµ ,

[Mµν , D] = 0 ,

[Kµ,Kν ] = 0 ,

[Mµν ,Kρ] = iηµρKν − iηνρKµ ,

[Kµ, D] = −iKµ ,

[Kµ, Pν ] = 2iηµνD − 2iMµν , (1.0.1)

After Weyl’s theory of gravitation and electrodynamics was proposed in 1918, interest appeared in
extending the general relativity by removing the restriction of invariance of proper differential line
elements ds ̸= 0. (See Appendix A). After the triumph of Einstein relativistic theory of gravitation
(confirmed by the measurements done during the solar eclipse of 1919), these ideas were relegated
and treated as non-physical. Nevertheless, they revealed to be very fruitful in the development
of local gauge theories. Instead of considering space-time transformations, imaginary rescales or
complex phase transformations belonging to an internal space can be considered. These new ideas,
started a revolution that lead to the U(1) gauge theory and further generalizations as embodied
by Yang-Mills non-commutative (non-abelian) theories. Nowadays, conformal symmetry, as well
as conformal theories, play a pivot role in many different fields in physics, such as AdS/CFT
correspondence and Gauge/Gravity duality, black hole physics and cosmology [2, 3, 4, 5, 6, 7, 8,
9, 10], just to mention a few.

The conception of symmetry can be applied in a large number of areas both at a classical-
quantum levels with relativistic and non-relativistic symmetry. In addition to space-time symme-
tries, one can seek for symmetries in the evolution of a system. (See Appendix B). At both the
quantum and classical levels, the evolution of a system is determined by a Hamiltonian. However,
there is an arbitrariness in the choice of the evolution parameter of the system. Consider for
example a given system with relativistic symmetry. As considered by Dirac [11], ten quantities
Pµ and Mµν are characteristic for the dynamical system. They are called the ten fundamental
quantities. They determine how all dynamical variables are affected by a change in the coordinate
system of the kind that occurs in special relativity. Each of them is associated with a type of
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1. Introduction
infinitesimal transformation of the inhomogeneous Lorentz group.

[Mµν ,Mρσ] = iηµρMνσ + iηνσMµρ − iηµσMνρ − iηνρMµσ ,

[Mµν , Pρ] = iηµρPν − iηνρPµ ,

[Pµ, Pν ] = 0 . (1.0.2)

To construct a theory of a dynamical system one must obtain expressions for the ten funda-
mental quantities that satisfy these Poisson brackets (PB) relations. The problem of finding a
new dynamical system reduces to the problem of finding a new solution of these equations. In
this sense, Dirac finds three forms of dynamics associated with different surfaces in space-time, an
instantaneous, an hyperboloid and a conic surface. Each of these forms of dynamics brings with
it a different explicit form of the energetic parameters i.e Hamiltonian as linear combinations of
the inhomogeneous Lorentz group algebra generators.

In the series of the recent works, interesting connections between some conformal mechanical
systems are found employing conformal bridge transformation (CBT) technique, which is a non-
unitary, non-local transformation inspired in Dirac forms of dynamics. This method made possible
to connect various quantum mechanical systems with a free particle in spaces of various dimensions
and geometric backgrounds, including those of a magnetic monopole and a cosmic string [12, 13,
14, 15, 16, 17, 18]. Thus, explicit and hidden symmetries as well as super-symmetries of various
systems can be derived from a free particle. This transformation maps asymptotically free systems
to harmonically confined systems, relating their non-compact and compact symmetry generators
of the conformal algebra so(2, 1) ∼= sl(2,R) and their eingenstates. The CBT construction is
analogous to the Weierstrass transformation and turns out to be related to the unitary Bargmann-
Segal transformation, which connects the Hilbert space in the coordinate representation with the
Fock-Bargmann space of the holomorphic representation [14]. At the same time, CBT corresponds
to a Dyson map [19], to which the PT symmetry is intimately related [12, 13]. The non-local
CBT generator has the nature of the eighth-order root of the identity operator in the quantum
phase space.

An interesting problem covered by CBT [14, 18], is the usual Landau problem, which is a
charged particle subjected to a constant uniform magnetic field. The motion in the plane per-
pendicular to the magnetic field is quantized and the energy levels are strongly degenerate in the
quantum number corresponding to the center of the Larmor circle in classical mechanics. This
theory constitutes the base for explaining interesting phenomena such as the Magnetic oscillations:
Shubnikov-de Haas and de Haas-van Alphen effects and the Hall effect [20].

On the other hand, hidden connections and correspondences between, in principle, different sys-
tems models are of great importance in physics. For example, the construction of (multi)soliton
solutions of the classical KdV equation and equations of its hierarchy is related to the stationary
Schrodinger theory via the inverse scattering problem and allows to obtain them from a free parti-
cle by employing the Darboux covariance of the corresponding Lax formulation [21, 22]. Similarly,
Bäcklund transformations connect various integrable systems and generate more complex solu-
tions for them starting from simpler ones [23]. In the same vein hidden correspondences between
some integrable systems are provided by the Newton-Hooke duality, based on conformal mapping
[24, 25, 26], and their generalizations in the form of the coupling constant metamorphosis phe-
nomenon [27, 28]. Another interesting system for which many strands of classical mathematical
physics come together is the point vortex system, which can be viewed as discrete or localized
solutions of the Euler equations in two dimensions (See Appendix C). Of course, there one en-
counters the theory of dynamical systems, of systems of ordinary differential equations (ODEs),

2



Hamiltonian dynamics, and several other topics that one might think of as expected. But there are
also unexpected or less expected connections to subjects such as projective geometry, to aspects
of the theory of polynomials, to elliptic functions when the vortices are in periodic or bounded
domains, and to pole decompositions of some of the integrable partial differential equations such
as Burgers equation and the KdV equation. Applications of even more exotic objects such as the
Schwarzian function and the Schottky-Klein prime function have appeared [29]. In this vein, this
Thesis addresses the following problems:
• i) Investigation of the correspondence between the non-commutative Landau problem and the
two-vortex dynamics.

The integral generators for the N-point vortex systems generate the centrally extended Lie
algebra eΓ(2) of the two-dimensional Euclidean group, where the dynamics is dictated by the
eΓ(2) ⊕ u(1) algebra. For the particular case of two-vortex, the trajectories are circular and the
Hamiltonian function can be written in terms of the Casimir element of the eΓ(2) algebra, anal-
ogously to the (non-commutative) Landau problem, where it is well known that their dynamical
integrals of motion generate the so(2, 1) ∼= sl(2,R) conformal algebra. We address the problem of
establishing a correspondence between the non-commutative Landau problem and the two-vortex
dynamics
• ii) The application of the conformal bridge transformation (CBT) to relate the quantum two-
vortex dynamics and non-commutative Landau problem to the quantum free particle dynamics.

We address the problem of establishing a procedure to obtain the two-vortex system through
CBT, exploiting the conformal symmetry of the system. Through this method we also relate a
free particle in non-commutative plane with non-commmutative Landau problem.

This Thesis is based on the results obtained in one year research project framework and pre-
sented in [arXive:2304.06677 [hep-th]] [30]. It is organized as follows. In Section 2 we discussed
the realization of so(2, 1) ∼= sl(2,R) algebra in terms of one-dimensional free particle symmetry
and displayed the flows produced by the algebra generators. Complex canonical transformation
is introduced at classical level and extended to its quantum analog as similarity transformation
forwarding to the conformal bridge transformation. Also, we have considered the outer Z2 auto-
morphism of the conformal sl(2,R) algebra, which has the nature of a PT -inversion and provide
an explanation for the difference between non-chiral and chiral phases for the related systems.
In Section 3 we have examined the non-commutative Landau Problem in sub-(non-chiral), super-
(chiral) and critical phases. In Section 4 we reviewed the symplectic structure and integrals of
motion for the general case of a system of N point vortices. Then, we focused on the case of max-
imally superintegrable two-vortex systems. In Section 5 we established the correspondence of the
non-commutative Landau Problem with the two-vortex systems. We have shown that trivial per-
mutation symmetry of vortices induces a weak-strong coupling duality in the NCLP. In Section 6
we provided an alternative study of the non-chiral and chiral phases for both systems, introducing
an integral of motion, allowing us to find two different canonical sets of variables in the non-chiral
and chiral phases, respectively. In Section 7 we have obtained the NCLP and two-vortex systems
in their different phases by means of CBT, employing the canonical pairs introduced in the previ-
ous section. Section 8 is devoted to the Conclusions and Outlook. In Appendix A, we introduced
the generators and particularities of the conformal group. In Appendix B we briefly discuss the
symplectic Hamiltonian formalism. Finally, in Appendix C we discuss the evolution equations of
point vortices from the Euler equation in two dimensions.
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2. Conformal symmetry

Consider a free particle in d = 1 dimension, where we set, for the sake of simplicity, the mass
parameter m = 1. The phase space coordinates (q, p) can be combined into a two-component
object ξTα = (q, p) with Poisson brackets {ξα, ξβ} = ϵαβ .

We can generate so(2, 1) algebra by quadratic functions of ξTα

H0 =
1
2p

2 , D = qp , K = 1
2q

2 ,

{D,H0} = 2H0 , {D,K} = −2K , {K,H0} = D . (2.0.1)

With linear combinations of these quadratic functions, the isomorphic sl(2,R) ∼= so(2, 1) algebra
generators are introduced by

H+ = 1
2(p

2 + q2) = H +K := 2J0 , H− = 1
2(p

2 − q2) = H −K := −2J1 ,
D := −2J2 , (2.0.2)

that according to (2.0.1) satisfy the relations

{J0, Jj} = ϵjkJk , j, k = 1, 2 , {Jj , Jk} = −ϵjkJ0 , (2.0.3)

which can be presented in a compact (2+1)D form

{Jµ, Jν} = −ϵµνλJλ , (2.0.4)

where µ, ν, λ = 0, 1, 2, ϵµνλ is an antisymmetric tensor, ϵ012 = 1, and the metric tensor is defined
as ηµν = diag (−1, 1, 1).

The H+ generator of (2.0.2) is compact and can be thought as the harmonic oscillator Hamilto-
nian, with frequency ω = 1. The H− generator is non-compact and can be thought as the inverted
harmonic oscillator Hamiltonian.

2.1. Conformal Flows

Canonical phase space transformations of ξα can be produced as

F : ξα → ξ′α = exp(τF ) ⋆ ξα = ξα +
∞∑
n=1

τn

n!
{F, {. . . , {F, ξα } . . .}︸ ︷︷ ︸

n

, (2.1.1)

where F (ξα) is an arbitrary phase space function.
Thereby, considering the generators (2.0.2) and τ ∈ R we produce the following transformations

H+ : ξα → ξ′α = Rαβξβ , Rαβ =

(
cos τ − sin τ
sin τ cos τ

)
, (2.1.2)

D : q → q′ = e−τq , p→ p′ = eτp , (2.1.3)
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2.2. Conformal Bridge Transformation

H− : ξα → ξ′α = Lαβξβ , Lαβ =

(
cosh τ − sinh τ
− sinh τ cosh τ

)
. (2.1.4)

If we consider transformations generated by Jµ, we produce the same transformations (2.1.2)-
(2.1.4) changing τ for τ/2. This means ξα is an so(2, 1) ∼= sl(2,R) spinor [31].

Classical analogs of the creation-annihilation operators are defined

a∓ =
1√
2
(q ± ip). (2.1.5)

Their phase space transformations produced with (2.0.2) generators are

H+ : a± → a′± = e±iτa± , (2.1.6)

D : a− → a′− = a− cosh τ − a+ sinh τ , a+ → a′+ = a+ cosh τ − a− sinh τ , (2.1.7)

H− : a− → a′− = a− cosh τ − i a+ sinh τ , a+ → a′+ = a+ cosh τ + i a− sinh τ , (2.1.8)

where the action of D produces a Bogoliubov transformation.
In particular, fixing the parameter τ = π/4, and considering the transformations (2.1.2) and

(2.1.6) we obtain

q′ = 1√
2
(q − p) , p′ = 1√

2
(q + p) , (2.1.9)

a′ ∓ = e±iπ/4a∓ , (2.1.10)

correspondingly. In terms of variables (2.1.9) the (2.0.2) generators are expressed as

H+ → H ′
+ = H+ , D → D′ = −H− , H− → H ′

− = D , (2.1.11)

where, as expected, H+ remains invariant. Thus, the D generator take the form of the inverted
harmonic oscillator Hamiltonian.

Using relationships

J1 = −
1

2
H− , J2 = −

1

2
D , (2.1.12)

we conclude that transformation (2.1.9) correspond to a rotation of the non-compact generators
(2.0.4) in π/2 such

Ji → J ′
i = ϵijJj , J0 → J0 . (2.1.13)

2.2. Conformal Bridge Transformation

The transformations considered above, are obtained by taking real values of the parameter τ ,
which do not change the compact or non-compact nature of the sl(2,R) generators. Now, we
allow the parameter τ to take complex values, obtaining complex canonical transformations.

We set the parameter τ = iπ/4, considering the H− = −2J1 generator. The phase space co-
ordinates (q, p), and complex linear combinations a±, are transformed under these considerations
as

exp
(
i
π

4
H−

)
⋆ (q, p, a−, a+) = (a+,−ia−, q,−ip) . (2.2.1)

These transformations are illustrated in Figure 2.1.
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2. Conformal symmetry

q−

a− −

ip−
a+

q

a−
ip

a− +

Figure 2.1.: Action of conformal bridge transformation (2.2.1).

The generators (2.0.1) are transformed as

exp
(
i
π

4
H−

)
⋆ (H+, H−, iD) = (−iD,H−, H+) , (2.2.2)

or, equivalently,

exp
(
−iπ

2
J1

)
⋆ (J0, J1, J2) = (iJ2, J1, iJ0) = (J ′

0, J
′
1, J

′
2) . (2.2.3)

In this sense, the Wick rotated non-compact generator D of sl(2,R) algebra (multiplied by i) is
transformed into the compact generator H+ = 2J0.

This complex canonical transformation is of eighth-order root nature of the identity transfor-
mation for the linear phase space variables, while, it constitutes a fourth-order root of the identity
transformation for sl(2,R) algebra generators.

The analog quantum transformation of (2.1.1) corresponds to a similarity transformation

Ô → Ô′ = exp
(
iτ F̂

)
Ô exp

(
−iτ F̂

)
. (2.2.4)

In case of (2.2.1)-(2.2.2), we have

Ô′ = ŜÔŜ−1 , Ŝ = exp
(π
4
Ĥ−

)
, (2.2.5)

where the Ŝ generator has the evolution operator form of the inverted harmonic oscillator for
complex time t = iπ/4.

The action of (2.2.5) over the canonical operators q̂ and p̂ correspond to the transformation from
the Schrödinger representation of the Heisenberg algebra to its Fock-Bargmann representation in
accordance with the Stone-von Neumann theorem [14].

Consider the monomials
ϕn = qn , n = 0, 1, . . . , (2.2.6)
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2.3. Z2 Automorphism
which are formal eigenfunctions of the Wick rotated dilatation operator,

iD̂ϕn =

(
n+

1

2

)
ϕn . (2.2.7)

At the same time, ϕn constitute Jordan states [32] of the free particle corresponding to its zero
energy eigenvalue

(Ĥ0)
⌊n
2
⌋ϕn = 0 , (2.2.8)

where ⌊n2 ⌋ is the integer part of n/2.
Consider the inverse Weierstrass transformation [33, 34] of the monomials

exp

(
−1

4

d2

dq2

)
ϕn = exp

(
1

4
Ĥ0

)
ϕn = 2−nHn(q) , (2.2.9)

where Hn(q) are the Hermite polynomials. By means of this relation, the application of CBT over
ϕn transforms them, up to a normalization, into eigenstates of the quantum harmonic oscillator,

Ŝϕn(q) ∝ ψn(q) =
1

2nπ1/2n!
Hn(q)e

−q2/2 . (2.2.10)

At the same time, it can be verified that the free particle planar wave eigenstates and the
Gaussian packet are transformed into coherent states and single-mode squeezed coherent states
of the quantum harmonic oscillator respectively [14].

CBT constitute a non-unitary, non-local transformation, which transmute the anti-hermitian
Wick rotated Dilatation operator

iD̂ =
i

2
(q̂p̂+ p̂q̂) =

i

2
(p̂′ 2 − q̂′ 2) = iĤ ′

− (2.2.11)

into Hermitian Hamiltonian operator

Ĥ+ =
1

2
(p̂2 + q̂2) (2.2.12)

of the quantum harmonic oscillator, and corresponds to the Dyson map to which the PT symmetry
is intimately related [12, 13].

CBT transformation can be generalized for d > 1 dimensions. By choosing d-dimensional
Cartesian coordinates in such a way that the generator (2.2.4) acts only on the coordinates which
it is built. Therefore, by adding an index j = 1, . . . , d to the phase space coordinates q and p we
obtain generators of sl(2,R) algebra, which are invariant under so(d) rotations.

2.3. Z2 Automorphism

It will be useful to study the outer Z2 automorphism of sl(2,R) algebra. Let us take two copies
of sl(2,R) algebra generated by J (a)

µ , a = 1, 2 (2.0.2) that satisfy the relationship {J (1)
µ , J

(2)
ν } = 0.

From them, we can construct three sets of the sl(2,R) generators as

Jµ = J (1)
µ + J (2)

µ , J ′
µ = J ′

µ
(1) + J ′

µ
(2) , J̃µ = J (1)

µ + J ′
µ
(2) , (2.3.1)

where J ′
µ is produced by a Z2 outer automorphism

Jµ → J ′
µ , (J ′

0, J
′
1, J

′
2) = (−J0, J2, J1) . (2.3.2)
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2. Conformal symmetry
Note that (2.3.2) represents a kind of the PT -inversion applied to Jµ, which is a composition

of the time, J0 → −J0, and space, Ji = (J1, J2) → −ϵij J̌j = (J2, J1), inversions acting on the
(2+1)D space with coordinates Jµ.

Now, supposing that J (a)
µ generators are realized in terms of the one-dimensional canonical

variables (q(a), p(a)), particularly, J (a)
0 = 1

2H
(a)
+ . Consequently, it can be found that J0 takes only

non-negative values, J ′
0 takes only non-positive values, and J̃0 takes values on all the real line.

At the quantum level, this automorphism acts in the space that corresponds to the direct sum of
the two infinite-dimensional (reducible) unitary representations of the sets sl(2,R) algebra (2.3.1),
each of which is, in turn, a direct sum of the two irreducible representations with eigenvalues of
the corresponding compact generators shifted mutually in 1/2.

In these representations, the Casimirs take the same value

Ĵ (1)
µ Ĵ (1)µ = Ĵ ′(2)

µ Ĵ ′(2)µ = −α(α− 1) = 3/16 , (2.3.3)

while Ĵ (1)
0 and Ĵ

′(2)
0 take eigenvalues α + n1 and −(α + n2) with α = 1/4, 3/4, and n1,n2 take

integer values 0, 1, . . . . The direct sums of the irreducible sl(2,R) ∼= so(2, 1) representations with
α = 1/4 and α = 1/4 + 1/2 = 3/4 constitute irreducible representations of the two copies of
osp(2, 1) superalgebra in which Ĵ

(1)
µ and Ĵ

′(2)
µ are treated as its even generators, while ξ̂(1)α and

ξ̂
(2)
α are its odd generators that mutually transform the corresponding states from the α = 1/4

and α = 3/4 subspaces [31].
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3. Non-commutative Landau Problem

To understand the dynamics and main properties of the two-vortex system, it is initially convenient
to study the non-commutative Landau problem (NCLP). The generalization of the usual Landau
problem to the case of noncommutative quantum mechanics has been actively examined in the
context of physics associated with noncommutative geometry [35, 36, 37, 38, 39, 40, 41, 42, 43, 44,
45, 46]. Recently, the Landau problem has attracted attention in the study of the non-relativistic
conformally invariant Schwartzian mechanical system associated with the low energy limit of the
Sachdev-Ye-Kitaev model [47, 48, 49].

The non-commutative Landau problem (NCLP) can be described by Lagrangian in symmetric
gauge is

L = PiẊi +
1

2
θϵijPiṖj +

1

2
BϵijXiẊj −

1

2m
P2
i , (3.0.1)

where Xi are the coordinates of the charged particle of mass m subjected to the constant magnetic
field B, while θ is defined as the non-commutative parameter.

We use units in which the speed of light c = 1 and charge e = 1. It is important to recall, that
we do not distinguish between uppercase and lowercase index, unless otherwise are specified, and
imply summation over repeated index.

Due to the non-quadratic velocity terms in the ‘kinetic term’, Lagrangian (3.0.1) is singular,
and has degenerate Hessian

Det|Wab| = 0 , Wab =
∂2L
∂qa∂qb

, (3.0.2)

where qa correspond to the local coordinates Xi and Pi. In this sense, the canonical momenta
π
(X)
i of the Xi coordinate and canonical momenta π(P)i of the Pi coordinates

π
(X)
i = Pi − 1

2BϵijXj , π
(P)
i = −1

2θϵijPj , (3.0.3)

are not invertible with respect to the velocities, and consequently constrained with the coordinates.
To study the model, we proceed to build a reduced phase space, with its corresponding sym-

plectic two-form. To this end, we employ the Dirac analysis [50] and introduce the weakly zero
primary constraints between the canonical momenta and coordinates

ϕ
(X)
i = π

(X)
i − Pi +

1
2BϵijXj ≈ 0 , ϕ

(P)
i = π

(P)
i + 1

2θϵijPj ≈ 0 , (3.0.4)

and the primary Hamiltonian

H =
1

2m
P2
i + uiϕ

(X)
i + viϕ

(P)
i , (3.0.5)

where ui(t), vi(t) are arbitrary functions.
Our aim is to reduce the defined σ = dπ

(X)
i ∧ dXi + dπ

(P)
i ∧ dPi to a subspace defined by the set

of constraints (3.0.4).
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3. Non-commutative Landau Problem
The Poisson brackets of the constraints (3.0.4) are

{ϕ(X)i , ϕ
(X)
j } = Bϵij , {ϕ(P)i , ϕ

(P)
j } = θϵij , {ϕ(X)i , ϕ

(P)
j } = −δij , (3.0.6)

and their matrix is

∆ =


0 B −1 0
−B 0 0 −1
1 0 0 θ
0 1 −θ 0

 , det(∆) = (1− β)2 , (3.0.7)

where β := Bθ.
When β ̸= 1, the determinant of the matrix is non-zero and the requirement of conservation of

the primary constraints (3.0.4) ϕ̇(X)i ≈ 0, ϕ̇(P)i ≈ 0, can always be done by choosing appropriately
the ui and vi functions.

3.1. NCLP Critical case

First, we consider the case where the magnetic field and non-commutative parameter are set in
such a way that β = 1, which implies det (∆) = 0. In this particular case, the primary constraints
(3.0.4) are no longer linear independent, and we must use a linear combination of them to build
a set of two first class constraints

ϕ̃i = ϕ
(X)
i − 1

θ
ϵijϕ

(P)
j ≈ 0 , ϕ

(P)
j ≈ 0, (3.1.1)

these constraints have Poisson brackets

{ϕ̃i, ϕ̃j} = {ϕ̃i, ϕ(P)j } = {ϕ̃
(P)
i , ϕ

(P)
j } = 0 , (3.1.2)

and the primary Hamiltonian takes the form

H =
1

2m
P2
i + ũiϕ̃i + viϕ

(P)
i . (3.1.3)

The requirement of conservation of primary constraints (3.1.1), ˙̃
ϕi ≈ 0, ϕ̇(P)i ≈ 0, produces

secondary constraints ψi = Pi ≈ 0.
These six constraints form a set of the second class constraints and the reduction to the sub-

space defined by them, provide the two-dimensional reduced phase space described by coordinates
Xi which have non-commuting components with respect to the Dirac-Poisson brackets (DPBs)
{Xi,Xj} = θϵij .

The Hamiltonian, space translations and rotation generators become

H = 0, Pi =
1

θ
ϵijXj , M = − 1

2θ
X2
i (3.1.4)

respectively.
This model corresponds to a particle in non-commutative plane which has no dynamics at all

Ẋi = 0.
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3.2. NCLP Non-critical case
3.2. NCLP Non-critical case

Now, considering β ̸= 1, relations (3.0.4) constitute a set of the second class constraints, and the
subspace defined by them produces the symplectic two-form

σ =
1

2
ϵij(B dXi ∧ dXj + θ dPi ∧ dPj) + dPi ∧ dXi, (3.2.1)

obtaining a four-dimensional reduced phase space described by the independent coordinates Xi

and Pi with DPBs

{Xi,Xj} =
θ

1− β ϵij , {Xi,Pj} =
1

1− β δij , {Pi,Pj} =
B

1− β ϵij . (3.2.2)

The constraint terms (3.0.4) become strongly zero and the reduced Hamiltonian takes the form

H =
1

2m
P2
i . (3.2.3)

The Noetherian integrals of motion are vector space translation generator of Xi coordinate

Pi = Pi −BϵijXj , (3.2.4)

{Pj ,Xi} = −δij , {Pi,Pj} = 0 , (3.2.5)

and angular momentum generator

M = ϵijXiPj +
1

2

(
θP2

i +BX2
i

)
, (3.2.6)

{M,Xi} = ϵijXi , {M,Pi} = ϵijPi . (3.2.7)

The vector space translation generator has non-commuting components in the sense of the DPBs,
and together with the rotation generator, set up a centrally extended Lie algebra eB(2) of the
two-dimensional Euclidean group

{Pi,Pj} = −B ϵij , {M,Pi} = ϵijPj , (3.2.8)

with −B playing the role of the central charge. The Casimir element of this eB(2) algebra is

C = 1

2
P2
i −BM . (3.2.9)

Therefore, we can present the Hamiltonian in terms of Casimir element as H = (m(1− β))−1 C.
Integrals (3.2.4) and (3.2.6) together with Hamiltonian (3.2.3) generate eB(2)⊕ u(1) algebra.

Equations of motion (EOM) generated by Hamiltonian (3.2.3) through DPBs (3.2.2) are

Ẋi =
1

m(1− β)Pi , Ṗi =
B

m(1− β)ϵijPj . (3.2.10)

We can employ the vector space translation integral to solve them, obtaining

Xi(t) = Xi
0 +Rni(t) , Xi

0 =
1
B ϵ

ijPj , R =
√
2mH
B , (3.2.11)

ni(t) = (cos(ω(t− t0)), sin(ω(t− t0))) , ω = B
m(1−β) . (3.2.12)
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3. Non-commutative Landau Problem
This dynamics, corresponds to circular trajectories of the charged particle with radius R centered
at Xi

0, where the sign of ω parameter fixes the rotation direction. This dynamics is illustrated in
Figure 3.1, for the particular case when the centered vector is smaller in magnitude with respect
to the radio.

t1 ⃗ i

t2

⃗ i
⃗

⃗ i



o

Figure 3.1.: NCLP particle trajectory (B ̸= 0) (θ ̸= 0).

Now, we define a new coordinate vector as

Yi = Xi + θϵijPj = (1− β)Xi + θϵijPj , (3.2.13)

where, by means of the second equality above, it can be thought as an “imaginary mirror particle"
vector coordinate, where its trajectory is determined by the β parameter. The trajectory can be
circumscribed with respect to the real particle trajectory, at closer points of their respective circles
for 0 < β < 1 or at the farthest points of their respective circles for 1 < β < 2. These trajectories
are illustrated in Figures 3.2 and 3.4 respectively. Also, the trajectory can be subscribed with
respect to the real particle trajectory, at closer points of their respective circles for β < 0 or at the
farthest points of their respective circles for β > 2. These trajectories are illustrated in Figures
3.3 and 3.5 respectively. Besides, when β = 2 they share the same trajectory at opposite points
of the same circle. For case β = 0, B ̸= 0, the imaginary and real coordinates match.

Vector Yi has zero DPBs with Xi, additionally is translated by Pi, and its DPBs components
depend only on the θ parameter

{Yi,Xj} = 0 , {Yi,Pj} = δij , {Yi,Yj} = −θϵij . (3.2.14)

The phase space of the NCLP can be described, up to a canonical transformation, in terms
of any of the six pairs of the vector variables, (Xi,Pi), (Xi,Yi), (Xi,Pi), (Pi,Pi), (Pi,Yi) and
(Yi,Pi). For simplicity, it is convenient to represent the integrals of motion, symplectic two-form
and DPBs in terms of the pairs (Pi,Pi) and (Xi,Yi).

To this purpose, we express Pi and Pi in terms of the real and imaginary particle coordinates
as

Pi =
1

θ
ϵij ((1− β)Xj − Yj) , Pi =

1

θ
ϵij (Xj − Yj) , (3.2.15)
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3.2. NCLP Non-critical case
with inverse relations

Xi =
1

B
ϵij (Pj − Pj) , Yi =

1

B
ϵij (Pj − (1− β)Pj) . (3.2.16)

⃗ i

⃗ i
0

⃗ i

t1

t2

Figure 3.2.: NCLP imaginary particle trajectory for (0 < β < 1).

⃗ i

⃗ i
0

⃗ it1

t2

Figure 3.3.: NCLP imaginary particle trajectory for (β < 0).
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3. Non-commutative Landau Problem

⃗ i

⃗ i
0

⃗ i

t1

t2

Figure 3.4.: NCLP imaginary particle trajectory for (1 < β < 2).

⃗ i

⃗ i
0

⃗ i

t2

t1

Figure 3.5.: NCLP imaginary particle trajectory for (2 < β).

Now, we summarize the Hamiltonian, integrals of motion, two-symplectic form and DPBs for
the chosen coordinates pairs

(Pi,Pi)→ H = 1
2mP2

i , Pi ,
M = 1

2B

(
P2
i − (1− β)P2

i

)
,

σ = 1
2B (1− β) ϵijdPi ∧ dPj − 1

2B ϵijdPi ∧ dPj ,
{Pi,Pj} = B

1−β ϵij , {Pi,Pj} = −Bϵij , {Pi,Pj} = 0 . (3.2.17)
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3.2. NCLP Non-critical case
(Yi,Xi)→ H = 1

2mθ2
(Xi − Y)2 , Pi = 1

θ ϵij ((1− β)Xi − Yi) ,

M = 1
2θ

(
Y2
i − (1− β)X2

i

)
,

σ = 1
2θ (1− β) ϵijdXi ∧ dXj − 1

2θ ϵijdYi ∧ dYj ,

{Xi,Xj} = θ
1−β ϵij , {Yi,Yj} = −θϵij , {Xi,Yj} = 0 . (3.2.18)

We distinguish two phases for the system. The super-critical phase β > 1, where the angular
momentum takes nonzero values of the sign of magnetic field B, in (P,P) coordinates, or sign of
the non-commutative parameter θ in (Y,X) coordinates and the sub-critical phase β < 1 where
the angular momentum takes values of both signs, including zero value.

Using the set of coordinates (3.2.17) we can define a new set of complex variables a and b

aεa = i sgn θ ·
√

|1−β|
2|B| (P1 + iP2) , bεb = 1√

2|B|
(P1 + iP2) , (3.2.19)

εa = sgn (B(β − 1)) , εb = sgnB . (3.2.20)

with DPBs
{a−, a+} = −i , {b−, b+} = −i , {a±, b±} = 0 , (3.2.21)

where sgn(A) stands for the parameter A sign. Thereby, we encompass all the sign possibilities
for B and θ parameters.

Expressing the Hamiltonian and integrals of motion in variable terms (3.2.19), we obtain

H = |ω| a+a− , M = εa a
+a− + εb b

+b− , |ω| = |B|
m|1− β| . (3.2.22)

Coordinates (3.2.19) have simple evolution in time given by

ȧ± = {a±,H} = ±|ω|ia± , ḃ± = {b±,H} = 0 . (3.2.23)

Only the a± variables have nontrivial dynamics and their solution is given by

a±(t) = e±i|ω|tA± , A± := e∓i|ω|ta± , (3.2.24)

where we obtain the dynamical, explicitly depending on time, integrals of motion d
dtA± =

∂A±/∂t+ {A±,H} = 0.
We can use these dynamical integrals (3.2.24) and the true, not depending explicitly on time,

integrals Pi to define quadratic functions. Changing the notation b± → B± we define

J0 =
1

2
A+A− , J± =

1

2

(
A±)2 , L0 =

1

2
B+B− , L± =

1

2

(
B±

)2
, (3.2.25)

that generate two copies of sl(2,R) algebra, sl(2,R)⊕ sl(2,R) ∼= AdS2⊕AdS2 ∼= so(2, 2) ∼= AdS3,

{J0,J±} = ∓iJ± , {J−,J+} = −2iJ0 , (3.2.26)
{L0,L±} = ∓iL± , {L−,L+} = −2iL0 , (3.2.27)

{J0,±,L0,±} = 0 . (3.2.28)

The Hamiltonian H and angular momentum M generators of the system are functions of the
compact generators J0 and L0.

H = 2|ω|J0 , M = 2 (εaJ0 + εbL0) . (3.2.29)
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3. Non-commutative Landau Problem
Setting explicitly t = 0 in the time-dependent functions A±, we do not modify the algebraic

structure in (3.2.21), (3.2.26)–(3.2.28), and (3.2.29). Then, the canonical quantization of the
system entails the commutation relations

[Â−, Â+] = 1 , [B̂−, B̂+] = 1 , [Â±, Â±] = 0 , [B̂±, B̂±] = 0 , (3.2.30)

[Â±, B̂±] = 0 , [Â±, B̂∓] = 0 , (3.2.31)

Due to Â∓ commute with B̂∓ we can construct simultaneous eingenstates of these operators

Â+Â− |nA, nB⟩ = nB |nA, nB⟩ ,
B̂+B̂− |nA, nB⟩ = nB |nA, nB⟩ ,

(3.2.32)

with |nA, nB⟩ = |nA⟩ ⊗ |nA⟩. The operators Â∓ and B̂∓ satisfy

Â+ |nA, nB⟩ =
√
nA + 1 |nA + 1, nB⟩ , Â− |nA, nB⟩ =

√
nA |nA − 1, nB⟩ ,

B̂+ |nA, nB⟩ =
√
nB + 1 |nA, nB + 1⟩ , B̂− |nA, nB⟩ =

√
nB |nA, nB − 1⟩ .

Thus, we can express any normalized state with the Fock space representation spanned by the
states

|nA, nB⟩ = |nA⟩ ⊗ |nB⟩ =
1√

nA!nB!

(
Â+

)nA (
B̂+

)nB |0, 0⟩ , (3.2.33)

with eigenvalues

Â+Â− |nA, nB⟩ = nA |nA, nB⟩ , B̂+B̂− |nA, nB⟩ = nB |nA, nB⟩ , nA, nA = 0, 1, . . . (3.2.34)

where ⟨0, 0|0, 0⟩ = 1, and ket |0, 0⟩ represent the ground state.
The quantum analogs of (3.2.25) with antisymmetrized ordering in compact generators

Ĵ0 =
1

4
(Â+Â− + Â−Â+) , L̂0 =

1

4
(B̂+B̂− + B̂−B̂+) , (3.2.35)

yields the quantum version of sl(2,R)⊕ sl(2,R) algebra (3.2.26)–(3.2.28). Through relationships
(3.2.29) quantum states (3.2.33) are eigenstates of the Hamiltonian and angular momentum op-
erators with eigenvalues

Ĥ |nA, nB⟩ = EnA |nA, nA⟩ , EnA =
(
nA + 1

2

)
, (3.2.36)

M̂ |nA, nB⟩ =MnA,nB |nA, nB⟩ , MnA,nB = εA
(
nA + 1

2

)
+ εB

(
nB + 1

2

)
. (3.2.37)

We distinguish two different phases of the system. The super-criticial phase β > 1, where the
angular momentum takes nonzero integer values of the magnetic field B sign, sgnB ·Mna,nb

∈ Z>0,
and the subcritical phase β < 1, where the angular momentum takes integer values of both signs,
including zero value, Mna,nb

∈ Z.
This picture is intimately related to the unitary reducible representation of sl(2,R) ⊕ sl(2,R)

explained in Sec.2.3.
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3.3. NC Free Particle
3.2.1. Landau Problem

The usual Landau problem can be obtained by fixing θ = 0, B ̸= 0. The translation generator
and Hamiltonian do not suffer any change in their form, while the angular momentum generator
turns into

M→M =
1

2B

(
P2
i − P2

i

)
. (3.2.38)

On the other hand, the coordinate of imaginary particle coincides with the coordinate of the
real particle Y = X. This is just a particular case of NCLP in the sub-critical phase. Hence, its
dynamics and canonical quantization are covered by the previous section where once again the
ladder coordinates can be used to construct the AdS3 algebra (3.2.26) and with them, the Hilbert
space corresponding to the system.

3.3. NC Free Particle

The case of a free particle in non-commutative plane (NCFP) can be reached by setting B = 0,
θ ̸= 0. In this limit, the vector Pi coincides with the space translation generator Pi = Pi.

For this case, it is convenient to express the system in terms of coordinates set (3.2.18) obtaining
vector space translation generator

Pi =
1

θ
ϵij (Xi − Yi) . (3.3.1)

The Hamiltonian and angular momentum turn into

H→ H0 =
1

2mθ2
(Xi − Y)2 , M→M0 =

1

2θ

(
Y2
i − X2

i

)
. (3.3.2)

Based on the angular momentum form, is convenient to define a new vector coordinate as

Xi =
1

2
(Xi + Yi) = Xi +

1

2
θϵijPj . (3.3.3)

This vector coordinate, along with the vector translation integral Pi form a canonical set of
variables,

{Xi,Xj} = {Pi,Pj} = 0 , {Xi,Pj} = δij . (3.3.4)

From the canonical structure viewpoint, the form of the Hamiltonian and angular momentum are

H0 =
1

2m
P2
i , M0 = ϵijXiPj . (3.3.5)

So, the system looks like a free scalar particle in two-dimensional commuting space.
Nonetheless, it is necessary to keep in mind that vector Xi is an auxiliary coordinate, and the

particle coordinate vector Xi with the non-commuting components is a linear combination of this
auxiliary vector Xi and vector momentum coordinates Xi = Xi − 1

2θϵijPj .
Vector space translation generator Pi and angular momentum M0 generate the Lie algebra e(2)

of the two-dimensional Euclidean group

{Pi,Pj} = 0 , {M0,Pi} = ϵijPj , (3.3.6)

where, anew, we can present the Hamiltonian in terms of the Casimir element

C0 =
1

2
P2
i , H0 =

1

m
C0 (3.3.7)
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3. Non-commutative Landau Problem
Integrals (3.3.5) together with the vector space translation Pi generate the e(2)⊕ u(1) algebra.

If we take into account Xi as the vector particle coordinate, we can construct an exotic Galilean
boosts, which transform this vector in a covariant form,

Gi = mXi − tPi +mθϵijPj , {Gi,Gj} = m2θϵij , {Xi,Gj} = −δijt . (3.3.8)

The Gi generators, are NCPF dynamical integral, d
dtGi =

∂Gi
∂t + {Gi,H0} = 0.

Furthermore, coordinate Xi does not transform covariantly under this exotic Galilean boosts,
{Xi,Gj} = −δijt−mθϵij and hence plays a role analogous to the Newton-Wigner coordinate for
a Dirac particle [37, 41, 51, 52]. The vector Yi, that can be express as Yi = Xi +

1
2θϵijPj =

Xi + θϵijPj , also does not transform covariantly under the action of the exotic Galilean boosts,
{Yi,Gj} = −δijt−mθϵij .

We can employ the auxiliary vector Xi to solve the EOM obtaining solution X i(t) = X i
0+

1
mP it.

This solution provides the vector dynamical integral X i
0 = X i(t) − 1

mP it that can be used to
construct quadratic dynamical integrals

D = X i
0P i = X iP i − 2H0t , K =

m

2
X i
0X i

0 =
m

2
X iX i − Dt−H0t

2 , (3.3.9)

which combined with Hamiltonian H0, generate the conformal sl(2,R) algebra

{D,H0} = 2H0 , {D,K} = −2K , {K,H0} = D , (3.3.10)

whose Casimir is proportional to the angular momentum (3.3.2)

C = H0K−
1

2
D2 =

1

4
M2

0 . (3.3.11)

These quadratic integrals, defined in (3.3.9), constitute the dilatation and conformal special trans-
formation respectively and are Noetherian integrals of motion, which can be provided from the
quasi-invariance of the first order Lagrangian. Setting t = 0, relationships (3.3.10) remain, and
particularly, we can rewrite the dilatation generator in terms of the “imaginary mirror particle"
Yi obtaining

D̃ = XiPi = −
1

θ
ϵijXiYj . (3.3.12)

The Xi and Yi coordinates can be combined into the “isospace" vector

Xi
a = (Xi,Yi) , (3.3.13)

finding that in index a = 1, 2, this coordinate behaves like a (1+1)-dimensional Lorentz vector
with respect to the global transformations generated by D̃

X′i = coshαXi − sinhαYi , Y′i = coshαYi − sinhαXi . (3.3.14)

The application of this generator over the phase space canonical variables Pi and Xi produces
rescaling transformations P ′

i = eα Pi, X ′
i = e−αXi.

This particularly interesting property can be reached noticing the Lagrangian (3.0.1) with B = 0
and θ ̸= 0 can be rewritten as

L0 =
1

θ
ϵij

(
YiẎj − XiẊj

)
− 1

2mθ2
(Xi − Yi)2 , (3.3.15)
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3.3. NC Free Particle
where the total time derivative term d

dt

(
− 1

2θ ϵijXiYj

)
has been omitted.

The first order in time derivative Lagrangian term can be presented equivalently as
1
2θ ϵijη

abXi
aẊ

j
b, where ηab = diag (−1, 1) is the (1+1)D Minkowski metric. This term is invari-

ant under global (1+1)D Lorentz boosts transformations of Xi
a in the “isospace" corresponding to

index a.
With the “isospace" Minkowski metric ηab, the angular momentum integral (3.3.2) takes the

form M0 =
1
2γη

abδijXi
aX

j
b, and the non-commutative free particle can be described by the so(1, 1)⊕

so(2) algebra, which is generated by D̃ and M0.
These two generators, along with H0 and K, will play a key role in the Conformal Bridge

Transformation (Sec.7).
This picture of emergent “isospace" is explained in Sec.2.1 by means of a canonical transforma-

tion generated by the compact generator flow of the conformal sl(2,R) algebra.
Finally, at the quantum level the non-covariant coordinate with respect to the exotic Galilean

boosts vector, Xi, allows us to work in a diagonal representation in the operator X̂i, in which
P̂j = −i∂/∂Xj , X̂j = Xj + i12θ ϵjk∂/∂Xk, and Ŷj = Xj − i12θ ϵjk∂/∂Xk. Then, we find the wave
eigenfunctions

ψP(X ) =
1

2π
exp(iXjPj) , EP =

1

2m
P2
i , (3.3.16)

of the Hamiltonian operator Ĥ0, where Pi is eigenvalue of the momentum operator.
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4. Vortex dynamics

The properties of those portions of fluid in which vorticity occurs were illustrated by Helmholtz
in his seminal paper of 1858. Picturing the vorticity confined to a set of infinitely thin, straight,
parallel filaments, each of which carries an invariant amount of “strength", he derived a set
of equations of motion for the intersection interacting points between these filaments and the
perpendicular plane to all of them. These intersection were defined as point vortices.

This dynamical model can be obtained in different ways, for example, the discretization of the
continuum equations for 2D inviscid flow, referred as Euler equations, lead to the point vortices
equations (See Appendix C). Properties of the fractional quantum Hall effect can be explained
in terms of fractional statistics of the corresponding quasiparticle (anyon) excitations [53, 54].
These anyons can be realized in the form of point vortices through a mechanism of statistics
transmutation which employs the Chern-Simons gauge theory [55, 56]. The idealization of a
two dimensional ideal flow as a collection of point vortex yields a wide variety of studies in
superconductivity, superfluidity, and Bose-Einstein condensate physics [57, 58, 59, 60, 61], just to
mention a few.

The N ≥ 2 point vortex dynamics on a plane can be described by Lagrangian [62, 63]

L = −1

2

N∑
n=1

γnϵijx
i
nẋ

j
m +

1

2

N∑
n<m

γnγm log r2nm , (4.0.1)

constituted by first order in time derivative (0+1)-dimensional Chern-Simons term and logarithm
‘potential term’, where ϵij is an antisymmetric tensor (ϵ12 := 1) and the n-th vortex coordinates
are given by x⃗n = (x1n, x

2
n). Each vortex has a strength γn. If n ̸= m → x⃗n ̸= x⃗m, and

consequently, r2nm = (x⃗n − x⃗m)2 > 0.
For the sake of simplicity, the vortex coordinates and their strengths γn are assumed to be

dimensionless.
Analogously to NCLP, we deal with a singular Lagrangian whose canonical momenta pin =

∂L/∂ẋin and coordinates xin, with Poisson brackets

{xin, pjm} = δnmδ
ij , {xin, xjm} = {pin, pjm} = 0 , (4.0.2)

are subject to the set of primary second class constraints

ϕin = pin −
1

2
δnmγmϵijx

j
m ≈ 0 , (4.0.3)

that satisfy relationships
{ϕin, ϕjm} = −δnmγmϵij . (4.0.4)

Equations above, indicate the N × N matrix ∆, obtained from them has non zero determinant
det|∆| ̸= 0 for γn ̸= 0, and we can always fix the arbitrary functions uin(t) that are imposed in
the primary Hamiltonian

H = −1

2

∑
n<m

γnγm log r2nm +
∑
n=1

uinϕ
i
n , (4.0.5)
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4.1. Two-vortex with nonzero total vorticity
in such way the constrains (4.0.3) hold with the time evolution. Then, we arrive the subspace
described by the symplectic two-form σ = 1

2γnϵijdx
i
n ∧ dxjn and corresponding Dirac-Poisson

brackets
{xin, xjm} = γ−1

n δnmϵ
ij . (4.0.6)

The Hamiltonian turns into
H = −1

2

∑
n<m

γnγm log r2nm , (4.0.7)

and together with (4.0.6) produces the EOM

ẋin = −ϵij
∑
n̸=m

γm(xjn − xjm)r−2
nm , (4.0.8)

that can also be obtained following directly from Lagrangian (4.0.1). Let us note that Kirchhoff
was the first who showed that equations 4.0.8 have a Hamiltonian nature given by Eqs. 4.0.6 and
4.0.7, see [62, 63]. Symplectic structure 4.0.6 can also be obtained by setting m = 0 in Landau
problem, see [70].

The Noetherian integrals of motion of the system (4.0.1) are

Pi =
∑
n=1

ϵijγnx
j
n , M = −1

2

∑
n=1

γnx⃗
2
n , (4.0.9)

which, generate translations, {Pi, x
j
a} = −δij , and rotations, {M,xai } = ϵijx

j
a. Analogously to

the NCLP, these generators form a centrally extended Lie algebra eΓ(2) of the two-dimensional
Euclidean group,

{Pi, Pj} = Γϵij , {M,Pi} = ϵijPj , Γ =
∑
n=1

γn , (4.0.10)

where the total vorticity of the system Γ plays the role of the central charge. Casimir element of
the algebra eΓ(2) is

CΓ = P 2
i + 2ΓM = −

∑
n<m

γnγmr
2
nm . (4.0.11)

Integrals (4.0.9) together with Hamiltonian (4.0.7) generate the eΓ(2)⊕ u(1) algebra.
System (4.0.6), (4.0.7) is maximally superintegrable in the case of N = 2 vortices, and com-

pletely integrable for N = 3 in the sense of Liouville. For N ≥ 4 it is not integrable [63].
In the general case of N vortices, equations of motion (4.0.8) are invariant under rescaling

xia → eαxia, t → e2αt. With respect to these transformations, Lagrangian is quasi-invariant
L → L + d

dt(Ct), C = α
∑

n<m γnγm, but the corresponding action S =
∫
Ldt is rescaled,

S → e2αS. In this sense, this symmetry in the equations of motion is not Noetherian.

4.1. Two-vortex with nonzero total vorticity

Now, we focus our attention in the N = 2 superintegrable system given by Hamiltonian

HΓ = −1

2
κ log r212 , κ := γ1γ2 . (4.1.1)
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4. Vortex dynamics
From (4.0.11), we recognize the Hamiltonian as a function of the Casimir element of (4.0.10)
algebra

HΓ = −1

2
κ log

(
−κ−1CΓ

)
. (4.1.2)

Looking at (4.0.10), it is intuitive to suppose there are differences in the dynamics whether we
fix the total vorticity parameter equal zero or not. In this section, we will consider the two-vortex
system for which the total vorticity Γ ̸= 0, while the next section will be guided to the study of
the system for which the total vorticity Γ = 0.

When Γ ̸= 0 it is convenient to describe the four-dimensional symplectic manifold by the vector
integral P⃗ and the relative coordinate vector r⃗

Pi = ϵij

(
γ1x

j
1 + γ2x

j
2

)
, ri12 = xi1 − xi2 := ri , riri > 0 . (4.1.3)

Their DPBs are

{ri, rj} = ϱ−1ϵij , {Pi, Pj} = Γϵij , {ri, Pj} = 0 , ϱ =
1

1
γ1

+ 1
γ2

=
κ

Γ
, (4.1.4)

where we define ϱ as a ”reduced vorticity". In these coordinates, the EOM of the system are given
in simple terms

Ṗi = 0 , ṙi = −ωϵijrj , ω = ΓR−2 , R2 = riri , (4.1.5)

and their solution lead to the circular motion dynamics

r1(t) = R cosω(t− t0) , r2(t) = R sinω(t− t0) , R = exp
(
−κ−1HΓ

)
, (4.1.6)

which can also be expressed in terms of the vortex pair coordinates as

xia(t) = Xi
0 +

1
Γϵabγbr

i(t) , Xi
0 = − 1

Γϵ
ijPj , (4.1.7)

Following Eq. (4.1.7) we find the trajectories correspond to circular motion given by the radii
R1 = |γ2Γ−1|R and R2 = |γ1Γ−1|R sharing the same guiding center X⃗0, however, we face two
types of dynamics depending on the sign of κ. In case of different sign strengths κ < 0, the
vortices perform their circular dynamics at the closest points in their respective circles, while for
vortices of same strengths sign κ > 0 remain at the farthest points of their respective circles. In
the case of vortices with the same strengths γ1 = γ2, they move on the same circle of radius R/2.
These three cases are illustrated by Figures 4.1, 4.2 and 4.3 respectively.
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4.1. Two-vortex with nonzero total vorticity

γ1>0

γ2<0

t1

t2

X⃗0

Figure 4.1.: Two-vortex with κ = γ1γ2 < 0.

γ1>0

γ2>0

t1

t2

X⃗0

Figure 4.2.: Two-vortex with κ = γ1γ2 > 0.
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4. Vortex dynamics

γ1= γ2>0
t1

t2

X⃗0

Figure 4.3.: Two-vortex with γ1 = γ2.

Using coordinates (4.1.3) we can express the angular momentum integral as

MΓ = − 1

2Γ

(
P 2
i + κR2

)
. (4.1.8)

It may take arbitrary values, MΓ ∈ R when κ < 0 and nonzero values of the sign −εΓ = −sgnΓ,
in case of κ > 0. For the last case, the angular momentum can take zero value, this occur when
the modulus of the vector corresponding to the guiding center equals the geometric mean of the
radii of the circles |X⃗0| =

√
R1R2 =

√
|ϱ|R.

Analogously to the NCLP, we define complex valued variables

A−εϱ =

√
|ϱ|
2

(r1 + ir2) , B−εΓ =
1√
2|Γ|

(P1 + iP2) , εϱ = sgn ϱ , εΓ = sgnΓ , (4.1.9)

with DPBs
{A−,A+} = −i , {B−,B+} = −i , {A±,B±} = 0 . (4.1.10)

Quadratic integrals similar to (3.2.26) can be constructed from these complex variables leading
to sl(2,R)⊕ sl(2,R) ∼= AdS3 algebra. Thus, we obtain

HΓ = −1

2
κ log

(
4|ϱ|−1J0

)
, MΓ = −2 (εϱJ0 + εΓL0) , (4.1.11)

where the integral J0 is related to the Casimir element (4.0.11) of the eΓ(2) algebra, J0 =
1
4 |Γ−1CΓ|.

Hamiltonian, together with the dynamical integrals J±, generate a nonlinear deformation of
the conformal sl(2,R) algebra,

{J−,J+} =
1

2
i|ϱ|R2 , {HΓ,J±} = ±2 i sngκR−2 J± , R2 = exp

(
−2HΓκ

−1
)
. (4.1.12)

In accordance with (4.1.11), the quantum states (3.2.33) are eigenstates of the Hamiltonian and
angular momentum operators, with eigenvalues

ĤΓ |na, nb⟩ = Ena |na, nb⟩ , Ena = −1
2κ log

(
2|ϱ|−1

(
na +

1
2

))
, (4.1.13)

M̂Γ |na, nb⟩ =Mna,nb
|na, nb⟩ , Mna,nb

= −εϱ
(
na +

1
2

)
− εΓ

(
nb +

1
2

)
. (4.1.14)
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4.2. Two-vortex with zero total vorticity
Considering κ < 0, the energy eigenvalues are bounded from below, and the angular momentum
eigenvalues take integer values Mna,nb

∈ Z. Instead, considering κ > 0 the energy eigenvalues
are bounded from above, and the angular momentum takes nonzero integer values of the sign of
(−Γ), −εΓMna,nb

∈ Z>0, We find that supercritical (chiral) phase of the NCLP is analogous to
κ > 0 case, while subcritical (non-chiral) phase is analogous to κ < 0.

4.2. Two-vortex with zero total vorticity

The case of zero total vorticity of the system Γ = 0, correspond to the vortex-antivortex dynamics.
If we denote γ1 = γ, γ2 = −γ + Γ, taking the limit Γ→ 0 we obtain

lim
Γ→0

Pi = γϵijrj := Πi , ri = xi1 − xi2 . (4.2.1)

We introduce a new set of linear independent of Πi coordinates set of variables, in the four-
dimensional symplectic manifold, as

χi =
1

2
(xi1 + xi2) . (4.2.2)

Vector (4.2.2) is in accordance with the limit Γ→ 0 applied to the arithmetic mean of the vortex
coordinates given by Eq. (4.1.7). In this sense, χi and Πi form the canonical set of variables with
DPBs

{χi,Πj} = δij , {χi, χj} = {Πi,Πj} = 0 . (4.2.3)

The Hamiltonian (4.1.1) and angular momentum reduce to

HΓ → H0 =
1

2
γ2 log

(
γ−2Π2

i

)
, MΓ →M0 = ϵijχiΠj , (4.2.4)

correspondingly. These integrals, analogously to the NCFP, generate the e(2)⊕u(1) algebra, while
the Casimir of e(2) subalgebra becomes C0 = Π2

i > 0.
The solution of EOM Π̇i = 0 , χ̇i = γ2Πi/Π⃗

2, are given by

χi(t) = χi
0 + γ2

Πi

Π⃗2
t , Πi = const , (4.2.5)

and terms of the vortices coordinates are

xi1(t) = χi
0 −

1

2γ
ϵijΠj + γ2

Πi

Π⃗2
t , xi2(t) = χi

0 +
1

2γ
ϵijΠj + γ2

Πi

Π⃗2
t . (4.2.6)

These equations describe rectilinear motion of the vortex-antivortex pair. They move maintaining
a fixed distance between them given by |r⃗| = |Π⃗/γ| = R and fixed speed inverse to this distance
| ˙⃗χ| = |γ|/R = |γ| exp

(
−H0/γ

2
)
.

These trajectories are illustrated in Figure 4.4
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4. Vortex dynamics

γ

−γ

X⃗0

X⃗⃗t) R

Figure 4.4.: Two-vortex with γ1 = −γ2.

The rectilinear orbits of the vortex-antivortex system can be obtained by taking the limit
Γ → 0 into the EOM solutions (4.1.7) when κ < 0, illustrated on Figure 4.1. For example, we
may consider

t0 = 0 , γ1 = γ , γ2 = −γ + Γ , P1 = µΓR , P2 = νΓR− γ , (4.2.7)

where µ, ν are arbitrary constants in R. Now, by taking Γ → 0 in the circular trajectories given
by Eqs. (4.1.6), (4.1.7), we obtain rectilinear trajectories of the vortex-antivortex system given
by Eq. (4.2.6) with

χ1
0 = (

1

2
− ν)R , χ2

0 = µR , Π1 = 0, , Π2 = −γR . (4.2.8)

The EOM solution provide the dynamical integrals of motion

χi
0 = χi − γ2(Πi/Π⃗2)t , (4.2.9)

that can be employed to construct two dynamical integrals of motion

D = χi
0Π

i = χiΠi − γ2t , (4.2.10)

K = 1
2 χ⃗

2

0 = 1
2 χ⃗

2 −
(
γ−1Dt+ 1

2 t
2
)
exp

(
−2γ−2H0

)
. (4.2.11)

These integrals along with the integral

H0 =
1
2Π⃗

2 = 1
2γ

2 exp
(
2H0/γ

2
)
, (4.2.12)

generate the conformal sl(2,R) algebra

{D,H0} = 2H0 , {D,K} = −2K , {K,H0} = D , (4.2.13)

whose Casimir is proportional to the angular momentum

C0 = H0K −
1

2
D2 =

1

4
M2

0 . (4.2.14)
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4.2. Two-vortex with zero total vorticity
It is important to recall this algebra is obtained from H0 integral. If we employ Hamiltonian
generator H0 instead of H0 integral we produce the deformed algebra

{D,H0} = γ2 , {K,H0} = D exp
(
−2γ−2H0

)
. (4.2.15)

The obtained dynamical integrals of motion, χi
0,D andK are Noetherian, which can be obtained

from the quasi-invariance of the first order Lagrangian

L = χ̇iΠi − 1

2
γ2 log

(
Π2

i /γ
2
)
, (4.2.16)

under corresponding transformations generated by them.
Completely analogous to NCFP, the first order in time derivative Lagrangian term can be

rewritten equivalently as 1
2γϵijη

abxiaẋ
j
b, where ηab = diag (−1, 1) is the (1+1)D Minkowski metric

in indexes a, b = 1, 2. The dynamical integral D generate Lorentz boosts transformations of xia in
the “isospace" corresponding to index a,

x′i1 = coshαxi1 − sinhαxi2 , x′i2 = coshαxi2 − sinhαxi1 , (4.2.17)

The set of canonical variables Πi and χi rescales Π′
i = eαΠi, χ′

i = e−α χi under these transforma-
tions.

Again, this ”isospace" emerges analogously to the NCFP (3.3.13).
The canonical quantization of the system entails DPBs relations (4.2.3), so we can work in the

representation where the operators χ̂j are diagonal and Π̂j = −i ∂/∂χj . Therefore, we find that
the plane wave functions

ψΠ(ξ) =
1

2π
exp(iχjΠj) (4.2.18)

are the normalized for delta function eigenstates of the vector space translation operator integral
Π̂jψΠ(χ) = ΠjψΠ(χ), and Hamiltonian Ĥ0 operator integral takes on them real eigenvalues EΠ =
1
2γ

2 log
(
γ−2Π2

i

)
.

It is important to remark due to the commutation in components [x̂ja, x̂kb ] = i(−1)aγ−1δabϵ
jk,

the Heisenberg uncertainty relation prevents to know simultaneously both coordinates of each
vortex.

This is also true in the two-vortex system of nonzero total vorticity and it is a characteristic of
the non-commutative space systems.
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5. NCLP & Two-Vortex correspondence

Now, we are in position to compare the studied systems. One can establish, up to the permutation
1↔ 2 of the vortices, the correspondence between the NCLP and the two-vortex system as

Xi ∼ xi1 , Yi ∼ xi2 , Pi ∼ −γ2ϵijrj , Pi ∼ Pi , M ∼MΓ , (5.0.1)

γ1 ∼ 1−β
θ , γ2 ∼ −1

θ , Γ ∼ −B , ϱ−1 ∼ θ β
1−β ,

γ1
γ2
∼ β − 1 . (5.0.2)

Nevertheless, there is an important difference between these two systems reflected in linear depen-
dence of H on (Xi −Yi)

2 (3.2.18), but logarithmic dependence of HΓ on (xi1 − xi2)2 = R2 (4.1.1).
Because of this essential difference their rotational frequency, on one hand, for the NCLP, is given
in terms of the parameters θ, B and m, ω = B

m(1−β) , while on the other hand, for the two-vortex
system, is given in terms of the energy, ω = Γexp(2HΓ/γ1γ2).

From the last relation in (5.0.2) we obtain that the sub-critical (non-chiral) phase β < 1
corresponds to the vortex pair with the opposite sign case κ < 0, while the super-critical (chiral)
phase β > 1 corresponds to the vortex pair of the same sign case κ > 0.

The correspondence with the usual Landau problem, θ = 0, B ̸= 0, is also covered by relations
(5.0.1), (5.0.2). By performing a change of variables, (xi1, xi2) → (xi, πi) in the Γ ̸= 0 system we
obtain

xi = xi1 xi2 = xi − 1

γ2
ϵijπj . (5.0.3)

Now, we redefine the Hamiltonian by shifting and rescaling

HΓ → hΓ =
γ2

γ22
(HΓ + log γ22) , (5.0.4)

where γ belongs to R. According to relations (5.0.1), (5.0.2), the ordinary Landau problem (θ = 0)
corresponds to take the limit γ2 →∞ obtaining

xi2 = xi1 = xi ∼ Xi πi ∼ Pi

Pi = πi + Γϵijxj ∼ Pi
MΓ = ϵijxiπj − 1

2Γx
2
i ∼M0

{xi, xj} = 0 {xiπj} = δij {πi, πj} = −Γϵij (5.0.5)

where the time evolution of the system is given by the “regularized" Hamiltonian

hΓ =
1

2
γ2 log π2i . (5.0.6)

The NCFP (B = 0 , θ ̸= 0) corresponds to the vortex-antivortex system, Γ = 0.
Finally, the critical case β = 1 corresponds to the two-vortex system with one of the strengths

set equal to zero. By putting γ2 = 0, we obtain the two second-class constraints (4.0.3) ϕi1 ≈ 0
and two first-class constraints ϕi2 = pi2 ≈ 0. The latter pair of constraints means the coordinates
associated with 2 index are pure gauge, consequently, the reduction of the system to the surface of
the second class constraints ϕi1 ≈ 0 results in the two-dimensional symplectic manifold described
by coordinates xi1 with DPBs {xi1, xj1} = γ−1

1 ϵij and zero Hamiltonian H = 0. c.f. (3.1)
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5.1. Weak-strong duallity
5.1. Weak-strong duallity

For the two-vortex system, the permutation of pair vortex constitutes a symmetry of the nature
of inversion, I2 = id.

I : xi1 ↔ xi2 , γ1 ↔ γ2 , (5.1.1)

It acts as a reflection on the relative coordinate ri = xi1 − xi2, I : ri → −ri where the energy, the
momentum vector and the angular momentum integral remain invariant.

In the context of the NCLP, the correspondence (5.0.1), (5.0.2) leads to the analog of transfor-
mation (5.1.1),

I : Xi ↔ Yi , B → B , θ → θ

β − 1
⇒ (β − 1)→ (β − 1)−1 , I2 = id . (5.1.2)

Under this transformation the first DPBs in (3.2.2) and (3.2.14) mutually transform one into
another, mantaining the symplectic two-form σ = − 1

2θ ϵij((1−β)dXi∧dXj +dYi∧dYj) invariant.
Otherwise, the translation vector integral Pi along with the angular momentum M are invariant
under this transformation, while Pi coordinate and Hamiltonian H are rescaled as

I : Pi → (1− β)−1 Pi , H→ (1− β)−2H . (5.1.3)

In this sense, Hamiltonian of NCLP is invariant under transformation (5.1.2) for fixed values
β = 0 and β = 2. The case β = 0 ⇒ B = 0 correspond to NCFP system, which is analogous
to the vortex-antivortex system, Γ = 0 or the two vortex system related with the usual Landau
problem. And the case β = 2 ⇒ B = 2/θ correspond to the NCLP system, that is analogous to
the same vortex strength γ1 = γ2 system.

Because of the rescaling of the Hamiltonian H for values distinct from β = 0 or β = 2, this
transformation relates the regims of a weak and strong coupling with respect to the critical value
β = 1 within the same sub- or super- critical phase,

I : (β − 1)→ 0± ←→ (β − 1)−1 → ±∞ , (5.1.4)

where β = 0 and β = 2 correspond to the unique stable points. Therefore, I2 transformation
(5.1.2) has a nature of a weak-strong coupling duality.
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6. Canonical coordinates for CBT

The relations showed in Section 5 allow us to treat the chiral and non chiral phases of the NCLP
and the two-vortex system, respectively, in a quite similar way. As we explore in previous sections,
the sub- (β < 1) and super- (β > 1) critical phases possess different symplectic structures. Even
though, the phase space coordinate Xi and momentum Pi, with non-commutative components,
form two-dimensional vectors with respect to the angular momentum M generator, for both
phases, all their brackets have different signs due to their proportionality to (1− β)−1, while the
signs of the magnetic field B and the non-commutativity parameter θ are maintained fixed. When
they reach the critical value β = 1, the system decreases the dimension of the phase space from
four to two as we already shown in Sec.3.1.

The main difference observed between these phases is that for supercritical phase the system
acquires chirality and the angular momentum integral M takes one sign value that coincides with
the sign of the magnetic field B. In this way, generation of the two phases of NCLP from a free
particle, as we will see in Sec.6, requires different treatment.

As a result of chirality, we define a new integral as a linear combination of the angular momen-
tum M = 1

2B (P2
i − (1− β)P2

i ) and the Hamiltonian H as

M̆ := M+ 2m(1−β)
B H = 1

2B (P2
i + (1− β)P2

i ) , (6.0.1)

which is different in sign before the second term in comparison with the structure of the angular
momentum. In terms of integral (6.0.1) the Hamiltonian can be rewritten as

H = 1
2mP2

i =
B

2m(1−β)(M− M̆) . (6.0.2)

We also introduce the two-component object P̌i performing a spatial reflection on Pi as

P̌i := (−P1,P2) , P̌i
2 = P2

i , (6.0.3)

cf. (2.3.2).
The DPBs of integral (6.0.1) and the angular momentum integral over (Pi,Pi, P̌i) can be sum-

marized as
{M,Vi} = sϵijVj , s = (+,+,−) for Vi = (Pi,Pi, P̌i) , (6.0.4)

{M̆,Vi} = s̆ϵijVj , s̆ = (+,−,+) for Vi = (Pi,Pi, P̌i) . (6.0.5)

Integral Pi is transformed as a vector by both integrals M and M̆, while Pi and P̌i are transformed
as 2D vectors only by M and M̆ respectively.

6.1. Non-chiral phase

We start considering the non-chiral phase β < 1 of NCLP.
Based on relations (3.2.17) we can define a set of canonical variables (qi, pi) as

qi =
1
B ϵij(Pj − λPj) , pi =

1
2(Pi + λPi) , λ =

√
1− β . (6.1.1)
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6.1. Non-chiral phase
with DPBs

{qi, qj} = {pi, pj} = 0 , {qi, pj} = δij , (6.1.2)

The non-commutative vector phase space variables (Xi,Yi) and (Pi,Pi) are expressed in terms
of (qi, pi) as

Pi = pi − 1
2Bϵijqj , λPi = pi +

1
2Bϵijqj , (6.1.3)

Xi =
1
2(1 + λ−1)qi +

1
B (1− λ−1)ϵijpj , Yi =

1
2(1 + λ)qi +

1
B (1− λ)ϵijpj . (6.1.4)

These canonical variables (6.1.1) are defined such as

P i
|B=0

= Pi
|B=0

= pi , (6.1.5)

Xi
|B→0

= qi − 1
2θϵ

ijpj , Yi
|B→0

= qi + 1
2θϵ

ijpj , (6.1.6)

obtaining
qi|B→0

= Xi , (6.1.7)

corresponding to NCFP set coordinates shown in (3.3.3), (3.3.4).
Conversely, in the limit θ = 0 we obtain

Xi
|θ=0

= Yi
|θ=0

= qi , (6.1.8)

P i
|θ=0

= pi − 1
2Bϵ

ijqj , Pi
|θ=0

= pi + 1
2Bϵ

ijqj (6.1.9)

that corresponds to ordinary Landau problem in commutative plane.
Finally, case B = θ = 0 corresponds to a free particle in commutative plane

Xi
|B=θ=0

= Yi
|B=θ=0

= qi , P i
|B=θ=0

= Pi
|B=θ=0

= pi . (6.1.10)

The integrals M and M̆ are rewritten in terms of the canonical variables (6.1.1) as

M = ϵijqipj := M, M̆ = Ω−1Hosc , Hosc =
1
2mp2i +

1
2mΩ2q2i , (6.1.11)

and the Hamiltonian (3.2.3) takes the form

H = 1
1−β (Hosc − ΩM) , Ω = B

2m . (6.1.12)

Here Hosc may be thought as the planar isotropic harmonic oscillator Hamiltonian of mass m
and frequency Ω. The DPBs of integrals (6.1.11),(6.1.12) over the phase (qi, pi) coordinates are

{M, qi} = ϵijqj , {M, pi} = ϵijpj , {M̆, qi} = − 2
Bpi , {M̆, pi} = B

2 qi , (6.1.13)

{H, qi} = −m−1λ−1 Pi , {H, pi} = −Ωλ−1 ϵijPj . (6.1.14)

In terms of canonical variables, we define “linearly polarized" creation-annihilation operators,
restoring the explicit dependence on ℏ

â∓j =

√
m|Ω|
2ℏ

(
q̂j ± i 1

m|Ω| p̂j

)
, (6.1.15)

with commutation relations

[â−j , â
+
k ] = δjk , [â+j , â

+
k ] = [â−j , â

−
k ] = 0 , (6.1.16)

31



6. Canonical coordinates for CBT
In terms of these coordinates, we also define the “ciricularly polarized" creation-annihilation

operators

b̂−ε = 1√
2
(â−1 + iεâ−2 ) , b̂+ε = (b̂−ε )

† , ε = ± , (6.1.17)

with commutation relations
[b̂−ε , b̂

+
ε ] = 1 , [b̂±−, b̂

±
+] = 0 . (6.1.18)

where we identify the parameter ε with the sign of magnetic field ε = sgnB
The quantum analogs of the angular momentum and integral M̆ written in terms of these

quantum set of coordinates are

M̂ = εℏ(N̂−ε − N̂ε) ,
ˆ̆M = εℏ(N̂ε + N̂−ε + 1) , (6.1.19)

where N̂ε = b̂+ε b̂
−
ε , N̂−ε = b̂+−εb̂

−
−ε.

The quantum Hamiltonian becomes

Ĥ = ℏ |Ω|
1−β (2N̂ε + 1) . (6.1.20)

In this alternative way, we reproduce the results of Sec.3.2 for NCLP in sub-critical phase.

6.2. Chiral phase

Now, we consider the chiral phase β > 1 of NCLP.
Analogously to the non-chiral phase, we can define canonical variables (q̃i, p̃i) as

q̃i =
1
B ϵij(Pj − λ̃P̌j) , p̃i =

1
2(Pi + λ̃P̌i) , λ̃ =

√
β − 1 , (6.2.1)

with DPBs
{q̃i, q̃j} = {p̃i, p̃j} = 0 , {q̃i, p̃j} = δij . (6.2.2)

These coordinates are obtained by changing λ =
√
1− β → λ̃ =

√
β − 1 and Pi → P̌i into the

canonical variables for non-chirial phase.
The inverse relations of (6.2.1) are given by

Pi = p̃i − 1
2Bϵij q̃j , λ̃P̌i = p̃i +

1
2Bϵij q̃j . (6.2.3)

The integrals M and M̆ are rewritten in terms of the canonical variables (6.2.1) as

M̆ = ϵij q̃ip̃j := M̆ , M = Ω−1H̃osc , H̃osc =
1
2m p̃2i +

1
2mΩ2q̃2i , (6.2.4)

and Hamiltonian (3.2.3) takes the form

H = 1
β−1

(
H̃osc − ΩM̆

)
, (6.2.5)

Since the set of canonical coordinates (q̃i, p̃i) are in terms of the two component object P̌i and
integrals Pi they are no longer two-dimensional vectors with respect to the angular momentum
M, acording to Eq. (6.0.4). We emphasize this particularity by supplying their characters with a
tilde. However, these coordinates transform like two-dimensional vector under the action of the
integral M̆

{M̆, q̃i} = ϵij q̃j , {M̆, p̃i} = ϵij p̃j , {M, q̃i} = − 2
B p̃i , {M, p̃i} = B

2 q̃i , (6.2.6)
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6.2. Chiral phase
{H, q̃i} = −m−1λ̃−1 P̌i , {H, pi} = −Ωλ̃−1ϵijP̌j . (6.2.7)

Analogously to (6.1.15) and (6.1.17), we define the “linearly polarized", ˆ̃a±j starting from these new

set of coordinates (q̃i, p̃i), and using them, the “circularly polarized", ˆ̃b±ε , ˆ̃b±−ε, creation-annihilation
operators.

Then, the quantum analogs of M, M̆ and H integrals are presented in terms of number operators
ˆ̃N ε =

ˆ̃
b+ε

ˆ̃
b−ε and ˆ̃N−ε =

ˆ̃
b+−ε

ˆ̃
b−−ε as

M̂ = εℏ( ˆ̃Nε +
ˆ̃
N−ε + 1) ,

ˆ̆
M = εℏ( ˆ̃N−ε − ˆ̃

Nε) , Ĥ = ℏ |Ω|
β−1(2

ˆ̃
Nε + 1) . (6.2.8)

In this alternative way, we reproduce the result of Sec.3.2 for NCLP in super-critical phase.
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7. CBT for NCLP and Two-vortex system

We establish the method to obtain the quantum Landau problem in non-commutative plane from
the free particle system by means of CBT [14, 12, 13], and then, employing correspondences
(5.0.1) and (5.0.2), extrapolate this method to obtain in a similar way the non-zero total vorticity
two-vortex system.

Considering a quantum free particle system in two-dimensional Euclidean space described by
the set of canonical coordinates operators, q̂i and p̂i. We define the signed frequency parameter as
Ω = B

2m introduced in (6.1.12). Then, generators of the conformal sl(2,R) symmetry of the free
particle, which are the two-dimensional analogs of those considered in Sec.2.2 with the restored
parameters m, Ω and constant ℏ are

Ĵ0 =
1

2ℏ|Ω|Ĥ+ , Ĵ1 = − 1
2ℏ|Ω|Ĥ− , Ĵ2 = − 1

2ℏD̂ , (7.0.1)

where

Ĥ± = 1
2m p̂

2
i ± 1

2mΩ2q̂2i , D̂ = 1
2(q̂ip̂i + p̂iq̂i) . (7.0.2)

The two-dimensional analog of the similarity transformation (2.2.5) is

Ô′ = ŜÔŜ−1 , Ŝ = exp
(
−π

2 Ĵ1

)
, (7.0.3)

Application of the transformation (7.0.3) yields a mapping(
i
√

2
|B|ℏ p̂j ,

√
|B|
2ℏ q̂j , i

√
|B|ℏ â+j ,

√
ℏ
|B| â

−
j , Ĥ+, Ĥ−, iD̂, M̂

)
→(

â−j , â
+
j , p̂j , q̂j , −iD̂, Ĥ−, Ĥ+, M̂

)
, (7.0.4)

where â±j are the “linearly polarized" creation-annihilation operators of the form (6.1.15), and

M̂ = ϵikq̂j p̂k = iℏϵjkâ−j â
+
k . (7.0.5)

We can define the complex coordinates and canonically conjugate momenta,

wε =
1√
2
(q1 + iεq2) , w̄ε = w−ε , pε =

1√
2
(p1 − iεp2) , p̄ε = p−ε , (7.0.6)

subjected to DPBs
{wε, pε} = {w̄ε, p̄ε} = 1 , (7.0.7)

Applying transformation (7.0.3) to the quantum analogs of this set of coordinates we produce

(ŵε, p̂ε)→
(√

2ℏ
|B| b̂

+
−ε, −i

√
ℏ|B|
2 b̂−−ε

)
, (7.0.8)

( ˆ̄wε, ˆ̄pε)→
(√

2ℏ
|B| b̂

+
ε , −i

√
ℏ|B|
2 b̂−ε

)
, (7.0.9)
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7.1. Non-chiral phase CBT
which are “circularly polarized" creation-annihilation operators that are linear combinations of
â±j analogous to (6.1.17).

Transformation over the Wick rotated iD̂ and M̂ generators produces

iD̂ = i
2(q̂j p̂j + p̂j q̂j) → ˆ̆

M = ℏ(N̂ε + N̂−ε + 1) , (7.0.10)

M̂ = ϵij q̂ip̂j → M̂ = εℏ(N̂−ε − N̂ε) , (7.0.11)

where N̂ε = b̂+ε b̂
−
ε , N̂−ε = b̂+−εb̂

−
−ε,

In coordinate representation, these generators can be written as

iD̂ = ℏ(wε∂wε + w̄ε∂w̄ε + 1) , M̂ = εℏ(wϵ∂wε − w̄ε∂w̄ε) , (7.0.12)

where the set of functions

Φn+,n− = wn+
ε w̄n−

ε , n+, n− = 0, 1, . . . , (7.0.13)

constitute a set of formal eigenstates of the Wick rotated dilatation and momentum operators
with eigenvalues

iD̂Φn+,n− = ℏ(n+ + n− + 1)Φn+,n− , M̂Φn+,n− = ℏ(n+ − n−)Φn+,n− . (7.0.14)

Hamiltonian operator becomes

Ĥ0 =
1

2m
p̂i

2 = − 1

m
∂wε∂w̄ε . (7.0.15)

By virtue of [M̂, Ĥ0] = 0, [iD̂, Ĥ0] = −2ℏĤ0, states (7.0.13) also constitute eigenstates of free
particle Hamiltonian corresponding to zero energy [32, 64],

(Ĥ0)
n++n−+1Φn+,n− = 0 . (7.0.16)

These are called Jordan states.
The state Φ0,0 is annihilated by the operators p̂ε and ˆ̄pε, and in accordance with (2.2.10), is

transformed, up to a normalization into

Φ′
0,0 = ŜΦ0,0 ∝ exp

(
−m|Ω|

ℏ
wεw̄ε

)
. (7.0.17)

Also, in the Fock representation the ket states |n+, n−⟩ are the common eigenstates of the
number operators N̂ε and N̂−ε, which, up to a normalization, correspond to the transformed
states (7.0.13), Φ′

n+,n− = ŜΦn+,n− in holomorphic representation.

7.1. Non-chiral phase CBT

In order to obtain the non-chiral phase, we identify the canonical variables (6.1.1) with the
canonical coordinates and momenta (qi, pi). Thus, we generate the non-chiral phase of NCLP
from the free particle in a plane by applying CBT (7.0.3).

With the construction made in Sec.6.1, we find the pre-images of P̂i and P̂i operators

(ŵε, p̂ε)→
(
− i

|B|
1√
2
(P̂1 + iεP̂2), 1√

2
(P̂1 − iεP̂2)

)
, (7.1.1)

35



7. CBT for NCLP and Two-vortex system

( ˆ̄wε, ˆ̄pε)→
(
− i

|B|
λ√
2
(P̂1 − iεP̂2),

λ√
2
(P̂1 + iεP̂2)

)
. (7.1.2)

where the operators corresponding to the free particle are shown on the left side.
The quadratic integrals pre-images are also established as

M̂ → M̂ , iD̂ → ˆ̆M , |Ω|
1−β (iD̂ − εM̂)→ Ĥ . (7.1.3)

The pre-images of the non-commutative coordiantes X̂i and Ŷi can be found from (7.1.1), (7.1.2)
by using Eq. (3.2.16).

7.2. Chiral phase CBT

For chiral phase, we identify the canonical variables with q̃i and p̃i given by Eq. (6.2.1) as the
canonical variables of a free particle. Then, CBT transformation (7.0.3) maps

(ŵε, p̂ε)→
(
− i

|B|
1√
2
(P̂1 + iεP̂2), 1√

2
(P̂1 − iεP̂2)

)
, (7.2.1)

( ˆ̄wε, ˆ̄pε)→
(
− i

|B|
λ̃√
2
(ˆ̌P1 − iεˆ̌P2),

λ̃√
2
(P̂1 + iεP̂2)

)
. (7.2.2)

Pre-images of the operators X̂i and Ŷi can be found from (7.2.1), (7.2.2) by using Eq. (3.2.16).
The quadratic integrals pre-images are

M̂ → ˆ̆M , iεD̂ → M̂ , |Ω|
β−1(iD̂ − εM̂)→ Ĥ . (7.2.3)

For non-chiral (sub-critical) phase of NCLP, the angular momentum of the free particle M̂
transforms into the angular momentum while the Wick rotated generator of dilatations multiplied
by ε converts into the integral ˆ̆M. Instead, for the chirial (super-critical) phase, CBT transmutes
the free particle integrals M̂ and iεD̂ into the integrals ˆ̆M and M̂, respectively.

Because for free particle in non-commutative plane we have P i
|B=0

= Pi
|B=0

= pi, and qi

reduces to the coordinate X i introduced in Eq. (3.3.3), the conformal bridge transformation can
be reinterpreted as a non-unitary mapping from a free particle system in non-commutative plane
(B = 0, θ ̸= 0) into the NCLP (B ̸= 0, θ ̸= 0) in non-chiral and chiral phases by changing the
coordinate variable qi of the free particle for Xi in the above relations.

7.3. Two-vortex system CBT

The prescription to obtain the two-vortex system by CBT transformation, can be realized in ac-
cordance with correspondences (5.0.1) and (5.0.2) where the integral (6.0.1) and spatially reflected
vector (6.0.3) are introduced in analogous form

M̆ ∼ M̆Γ =MΓ + ϱ r2i , P̌i ∼ γ2ři , ři = (r2, r1) . (7.3.1)

Also, we define a direct analog of NCLP Hamiltonian, (see Eq. (4.2.12)) as

H ∼ HΓ := 1
2γ

2
2r

2
i = 1

2γ
2
2 exp

(
−2κ−1HΓ

)
, (7.3.2)
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7.3. Two-vortex system CBT
Now, we prescribe the adequate canonical pair of coordinates for two-vortex system in non-

chiral phase κ = γ1γ2 < 0. Coordinates (qi, pi) can be defined, in correspondence with NCLP and
Eq. (6.1.1), as

qi =
1
Γ

(
(γ1 + λγ2)x

i
1 + γ2(1− λ)xi2

)
, pi =

1
2ϵik

(
(γ1 − λγ2)xk1 + γ2(1 + λ)xk2

)
, (7.3.3)

where λ =
√
−γ1/γ2.

We can verify that the set of coordinates has appropriate limits when we tend one of the
parameters to zero. The limit Γ→ 0 provides

qi|Γ→0
=

1

2
(xi1 + xi2) = χi , pi|Γ→0

= Πi , (7.3.4)

where χi and Πi are the canonical variables of the vortex-antivortex system (see Eqs. (4.2.2) and
(4.2.1)).

The inverse relations of (7.3.3) are

xi1 =
1
2(1 + λ−1)qi − 1

Γ(1− λ−1)ϵijpj , xi2 =
1
2(1 + λ)qi − 1

Γ(1− λ)ϵijpj , (7.3.5)

beside, we obtain

Pi = pi +
1
2Γϵijqj , λγ2 ri = ϵijpj +

1
2Γqi . (7.3.6)

The quadratic integrals MΓ, M̆Γ and HΓ are presented in a analogous way to (6.1.11), (6.2.5),
in canonical variables terms (7.3.3)

MΓ = ϵijq
ipj :=M , M̆Γ = Ω−1Hosc , Hosc =

1
2p

2
i +

1
2Ω

2q2i , (7.3.7)

HΓ = λ−2(Hosc − ΩM) , Ω = −1
2Γ . (7.3.8)

And the free particle dilatation generator takes the form (see Eq. (3.3.12))

D = qipi = sgn γ2
√−κ ϵijxi1xj2 , (7.3.9)

On the other hand, if we consider the two-vortex system in the chirial phase, κ > 0. The
adequate canonical variables (q̃i, p̃i), definded by analogy to (6.2.1), are

q̃i = − 1
Γϵij(Pj − γ2λ̃ řj) , p̃ j = Pi + γ2λ̃ ři , (7.3.10)

where λ̃ =
√
γ1/γ2.

The inverse relations of (7.3.10) are

xj1 =
1
2

(
1− (−1)j λ̃−1

)
q̃ j − 1

Γ(1 + λ̃−1)ϵjkp̃k ,

xj2 =
1
2(1 + (−1)j λ̃)q̃ j − 1

Γ(1− (−1)j λ̃)ϵjkp̃k , (7.3.11)

and also obtaining

Pi = p̃i +
1
2Γϵij q̃j , γ2 ři = p̃i − 1

2Γϵij q̃j . (7.3.12)
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7. CBT for NCLP and Two-vortex system
This quadratic integrals M̆Γ, MΓ and HΓ, analogous to (6.2.4), are presented in terms of this

set of canonical coordinates

M̆Γ = ϵij q̃
ip̃ j := M̆ , MΓ = Ω−1H̃osc , H̃osc =

1
2 p̃i

2 + 1
2Ω

2q̃i
2 , (7.3.13)

HΓ = λ̃−2(H̃osc − ΩM̆) , (7.3.14)

where Ω is defined in (7.3.8).
The dilation generator obtained is

D = q̃ip̃i = sgn γ2
√
κ
Γ ϵijPiřj . (7.3.15)

With these correspondences in dynamical variables and integrals of motion, we are in a position
to carry out the procedure presented above and proceed in a similar way to NCLP in its respective
two phases. As well, we can apply CBT to a free particle obtaining the quantum integral ĤΓ

with nonzero total vorticity Γ ̸= 0. Finally by means of Eq. (7.3.2) we obtain the correct integral
operator as

ĤΓ = −1
2κ log

(
2γ−2

2 ĤΓ

)
. (7.3.16)

We can also generate the two-vortex systems with κ = γ1γ2 < 0, Γ ̸= 0, and κ > 0 from the
vortex-antivortex system with Γ = 0, identifying the (qi, pi) canonical coordinates with the vortex-
antivortex canonical coordinates (χi,Πi). Also, by means of the composition of the corresponding
inverse and direct conformal bridge transformations, the two-vortex system with κ < 0, Γ ̸= 0, and
the system with κ > 0 can be related via the “virtual" free particle, or via the vortex-antivortex
system with Γ = 0.
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8. Conclusions and Outlook

The correspondence between non-commutative Landau problem and two-vortex system is given.
Introducing an ”imaginary mirror particle" coordinate in NCLP, we established a relation between
a set of its coordinates and parameters with those of the two-vortex system, based on their
dynamics. In coherence with the central charge for their respective eB(2) and eΓ(2) algebras, we
found that parameter Γ = γ1 + γ2 in the two-vortex system corresponds to the minus magnetic
field, −B, in the NCLP. Consequently, one of the vortex strength γ is mapped to −θ−1, where θ
corresponds to the non-commutativity parameter of the NCLP.

The i) sub- (β = Bθ < 1), ii) super- (β > 1), and iii) critical (β = 1) phases in NCLP correspond
to the i) non-chiral (κ = γ1γ2 < 0), ii) chiral (κ > 0), and iii) stationary (when one of the vortex
strengths γa is set to zero) cases of two-vortex system. For both systems, the angular momentum
takes values of i) both signs, ii) one sign, and iii) discrete values of one sign, respectively.

The NCFP (B = 0,θ ̸= 0) with its hidden (1+1)D “isospace" Lorentz symmetry corresponds to
the vortex-antivortex system (Γ = 0). The usual Landau problem (θ = 0, B ̸= 0) also is covered
by the correspondence with the two-vortex system via a limit procedure applied to the case κ < 0.
In this limit, the vortices coordinates coincide, and their coordinates components commute.

The obtained correspondences between the systems showed us that permutation symmetry of
the vortex pair generates weak-strong coupling duality in NCLP, H→ (1−β)−2H, where H is the
NCLP Hamiltonian. In this scenario, two points β = 0 and β = 2 constitute stable points under
this weak-strong duality. The chiral phase at β = 2 corresponds to vortices of the same strength
γ1 = γ2. Conversely, the non-chiral phase at β = 0 corresponds to the cases of vortex-antivortex
system Γ = 0 or to the indicated limit case to be similar to the usual Landau problem with
θ = 0 , B ̸= 0.

As a consequence of the chirality, we introduced a linear combination M̆ of the angular mo-
mentum M and Hamiltonian H integrals in NCLP. This particular integral generates rotations
of the guiding center vector integral of motion and of the spatially reflected non-commutative
momentum. This allowed us to identify the appropriate sets of canonical coordinates and mo-
menta for the 2D vector coordinates that transforms as vectors either with respect to the angular
momentum M or the defined integral M̆ in the sub-critical and super-critical phases, respectively.
With the found correspondences, we were able to find the two-vortex system analogs.

The nature of the chiral and non-chiral phases in both quantum systems are related to the outer
Z2 automorphism of the conformal sl(2,R) algebra.

The appropriate set of canonical coordinates enabled us to construct two similarly but different
forms of the conformal bridge transformation, which constitute a non-unitary similarity transfor-
mation that maps a 2D quantum free particle system into sub-critical and super-critical phases
of NCLP and the non-chiral and chiral phases of two-vortex systems. The CBT, based on the
conformal sl(2,R) symmetry, is a kind of the Dyson map appearing in the PT symmetry [12, 13].
It acts as the eighth-order root of an identity transformation in the phase space, which changes
the topological nature of the sl(2,R) generators.

The action of the CBT, over a linear combination of the Wick rotated dilatation and angular
momentum operator generators corresponding to the free particle, is transformed into Hamiltonian
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8. Conclusions and Outlook
operators of the two quantum systems in corresponding sub-critical (non-chiral) or super-critical
(chiral) phases. In particular, when we performed the mapping into the non-chiral phase, the
angular momentum operator of the free particle was transformed into the angular momentum
integral of NCLP, or its analog in two-vortex system, while, on the other hand, for chiral phase,
the Wick rotated dilatation generator of the free particle was mapped into the integral ˆ̆M of
NCLP, or its analog in the two-vortex system. In this sense, the corresponding transformation
into the chiral phase of the two systems, mapped the Wick rotated dilatation generator into the
angular momentum operator, while its angular momentum mapped into the integral ˆ̆M of NCLP
or its analog in the two-vortex system. The described picture have not appeared in earlier CBT
applications.

Since the CBT only involves the conformal algebra realization, it can be generated in analogous
way starting from the vortex-antivortex system (Γ = 0) and free particle in non-commutative
plane (B = 0, θ ̸= 0) mapping any one of these systems into the sub-critical (non-chiral) and
super-critical (chiral) phases of NCLP or its analog in two-vortex system, respectively.

Because the CBT is an invertible non-unitary transformation, we can also relate the sub-critical
(non-chiral) and super-critical (chiral) phases of NCLP, and its analog in two-vortex system, by
taking the inverse CBT from the sub-critical phase into a “virtual" free particle (in commuting
or non-commuting space) or, equivalently into the vortex-antivortex system, and then, by CBT
composition, relate it to the super-critical phase. In this composition of CBT, it is convenient to
take the same value for the magnetic field B in both phases, and choose the non-commutative
parameter θ, such that β = Bθ < 1 at the beginning, and then, choose θ′ so that β′ = Bθ′ > 1 for
the second CBT composition. The inverse relation from super-critical to sub-critical is analogous.

We have investigated the relationships between the classical and quantum dynamics of NCLP
and the planar two-vortex system. An interesting perspective for study is to generalize the ob-
tained results for non planar spaces with spherical and hyperbolic geometries [39, 65]. The case
of the hyperbolic geometry has a particular interest in the light of the non-relativistic conformal-
invariant Schwartzian mechanics associated with the low energy limit of the Sachdev-Ye-Kitaev
model [47, 48], problem related to the particle dynamics on AdS2 and Landau problem on hyper-
bolic space [49].

We expect that the established relationships and mappings can be useful for the theory of anyons
and fractional Hall effect, where the point vortices and non-commutative quantum mechanics play
an important role.
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Appendices

A. Conformal Group

Assume a metric structure ds2 = gµν(x)dx
µdxν in a space-time manifold. Symmetries, in general,

are associated with isometries of this metric, i.e. transformations of coordinates that preserve the
interval invariant ds2 → ds′2 = ds2. This is often understood as a space-time diffeomorphism.

For instance, consider Minkowski gµν = ηµν space-time with Cartesian coordinates. There
exist some transformations that preserve the metric ηµν invariant. These transformations include
translations, rotations and Lorentz boosts and they generators are

Mµν = −i (ηµρxρ∂ν − ηνρxρ∂µ) , Pµ = −i∂µ , (.0.1)

where Mµν contains the space rotations and Lorentz boosts, and Pµ corresponds to translation
generators.

Preserve the metric invariant means ηµν is a fixed specified matrix and the Poincare transforma-
tions keep the interval ds2 = ηµνdx

µdxν invariant. Nevertheless, a coordinate transformation can
be postulated for which gµν(x)→ g′µν(x) = h(x)gµν(x). This transformation does not contradict
the second postulate of relativity that requires light in vacuum fulfills ds2 = 0. However, this
kind of transformation produces the rate of clocks will depend on their history.

In this flat Minkowski space-time considering two points with interval ds2 = 0 and performing
a transformation xµ → x′µ = fµ(x) demanding ds′2 = 0, we imply

ηµνdx
µdxν = 0→ ηµνΛ

µ
ρΛ

ν
σdx

ρdxσ = 0 , (.0.2)

where Λµ
ν = ∂νf

µ. Taking account an infinitesimal transformation Λµ
ν = δµν + ∂νϵ

µ in Eq(.0.2),
implicates

(∂µϵν + ∂νϵµ) dx
µdxν = 0 . (.0.3)

In order to satisfy this relation, is required

(∂µϵν + ∂νϵµ) = Kηµν , (.0.4)

where K can be determined by multiplying the equality above with ηµν . The result yields K =
2
d(∂µϵ

µ), where d is the dimension of the metric tensor. We conclude

(∂µϵν + ∂νϵµ) =
2

d
(∂ρϵ

ρ)ηµν , (.0.5)

which refers to the constraint equation for conformal transformations. This equation can be
manipulated to obtain

(1− d) ∂µ∂µ(∂ρϵρ) = 0 , (.0.6)

which becomes a trivial transformation at d = 1, and fails at d = 2, case that will be considered
in detail later. This transformation is precisely a change in the scale of metric gµν(x)→ g′µν(x) =
h(x)gµν(x). From Eq. (.0.6) is obtained that ϵµ is constrained to be at most quadratic in the
coordinates arguments. Any cubic or higher dependence would violate the third derivative being
zero everywhere.

Taking into account the zero order term in coordinates, we obtain the aforementioned trans-
lations. A new generator D = ixµ∂µ is obtained considering a linear term in coordinates. This
transformation correspond to dilatations that act over the coordinates as

xµ → x′µ = αxµ . (.0.7)
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8. Conclusions and Outlook
Before considering the quadratic transformation in coordinates, is important to mention another
transformation which preserves the null directions. The inversion I : xµ → x′µ = xµ/x2, for
which the Jacobian transformation matrix is Λµ

ν = δµν /x2 − 2xµxν/(x
2)2 leads to

ηµνΛ
µ
ρΛ

ν
σdx

ρdxσ =
1

(x2)2
ηρσdx

ρdxσ . (.0.8)

Thereby, relation (.0.2) holds. The nature of I is singular on the light cone and do not constitute
an infinitesimal transformation, however, we can define an infinitesimal generator as Kµ := IPµI.
Then, transformation exp (−ibµKµ) maps

xµ → x′µ =

(
xµ + bµx2

)
(1 + 2bµxµ + x2b2)

. (.0.9)

Its generator isKµ = i
(
x2δνµ − 2xνxµ

)
∂ν , which correspond to the quadratic coordinate argument

infinitesimal transformation and is called special conformal transformation.
In this way, adding the dilatations and special conformal transformations to the Poincare alge-

bra, we obtain a 15 dimensional Lie algebra

[Mµν ,Mρσ] = iηµρMνσ + iηνσMµρ − iηµσMνρ − iηνρMµσ ,

[Mµν , Pρ] = iηµρPν − iηνρPµ ,

[Pµ, Pν ] = 0 ,

[Pµ, D] = iPµ ,

[Mµν , D] = 0 ,

[Kµ,Kν ] = 0 ,

[Mµν ,Kρ] = iηµρKν − iηνρKµ ,

[Kµ, D] = −iKµ ,

[Kµ, Pν ] = 2iηµνD − 2iMµν , (.0.10)

called conformal symmetry group.
There are d generators for both translations and special conformal transformations, rotations

(with their constraint of antisymmetry), add d(d−1)
2 generators and one other generator for dilata-

tions. We calculate a total of (d+2)(d+1)
2 , hence the conformal group in d dimensions is isomorphic

to the group SO(d+ 1, 1) with (d+2)(d+1)
2 parameters.

Applying the aforementioned to the two-dimensional case we get

SO(3, 1) ∼= SL(2,C) . (.0.11)

This is indeed true for the global conformal group for d = 2 but we expect the infinitesimal
structure to be quite different due to equation (.0.6). From equation (.0.5) for µ = ν = 0, 1 we
obtain in both cases

∂0ϵ0 = ∂1ϵ1 . (.0.12)

For µ ̸= ν we are on the off-diagonal of the metric tensor (which we just take to be the identity
for a moment - no Minkowski space involved) and get

∂0ϵ1 = −∂1ϵ0 . (.0.13)
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If we identify ϵ0,1 with the real and imaginary part of a complex function respectively, obtaining
the Cauchy-Riemann equations This means that the infinitesimal conformal maps are exactly the
holomorphic ones on the complex plane. A general locally holomorphic map can be written down
as

f(z) = z +
∑
n∈Z

ϵn(−zn+1) , (.0.14)

which can be decomposed into functions fn = ϵn(−zn+1) corresponding to the summands in
the expansion. Each of those infinitesimal transformations has a corresponding generator ln =
−zn+1∂z. The commutation relation of these generators are

[ln, lm] = (n−m)ln+m . (.0.15)

These generators constituting Laurent series together with this commutation relation are called
Witt Algebra. It is infinite-dimensional. But, on the other hand the group of conformal transfor-
mations in d dimensions is isomorphic to SO(d + 1, 1), for the case d = 2 this would only allow
for six dimensions, not infinitely many. This paradox comes from the fact that equation (.0.6)
was used to derive the correlation between those groups but it does not hold for the infinitesi-
mal transformations considered here. Let us instead review global conformal transformations, i.e.
those which map the Riemann sphere in a 1− 1 and holomorphic way onto itself. From complex
analysis we know that those functions have to fulfill a couple of constraints. It may not have
essential singularities. Injectivity requires that it may only have one pole of order one and one
zero of multiplicity one. It must satisfy the group property, i.e. the combination must again be
such a transformation. The only holomorphic function left are thus

f(z) =
az + b

cz + d
ad− bc = const . (.0.16)

Those transformations are called Mobius Transformations, where the composition of two Mobius
Transformations results in another Mobius Transformation. We can identify every Mobius trans-
form with an element of SL(2,C) which is in turn isomorphic to SO(3, 1). We have thus shown
that for global conformal transformations, we recover the behavior of the transformation group
(.0.10).

Let us reconsider the generators ln. We note that the principal part of the Laurent series diverges
at z = 0 for n < −1. Now we study the behavior for z → ∞. Again from complex analysis we
know that f(z) is defined to have a singularity at z →∞ if f(w := 1

z ) has a singularity at w = 0.
Thus we first have to recast the generators into that shape. Since

z =
1

w
→ ∂

∂z
=
∂w

∂z

∂

∂w
= −w2 ∂

∂w
. (.0.17)

Thus, we obtain

ln = −zn+1∂z = −
(
− 1

w

)n−1

∂w . (.0.18)

A singularity at w = 0 in the latter expression occurs for n > 1. Thus, the only generators that are
allowed in a holomorphic 1−1 Laurent series are l−1, l0 and l1. Consequently the local and global
perspective of the transformation are inequivalent. This is a particularity of the two-dimensional
case.
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8. Conclusions and Outlook
B. Hamiltonian Formalism

From the classical mechanics perspective, the possible physical system configurations are described
by a generalized phase space, given by a symplectic manifold, while the dynamics are obtained
from a Hamiltonian function

A symplectic manifold is given by a pair (M, σ), where M is a differentiable manifold and
σ : TM × TM → R is an antisymmetric two-form. This symplectic form is non-degenerate
det(σ) ̸= 0 and closed, dσ = 0. Local coordinates on M are given by {xa}, with a = 1, . . . , 2n.
The non-degeneracy, which impliesM has an even dimension allows to write the symplectic two-
form as σ = 1

2σabdx
a ∧ dxb. By Darboux’s theorem, it can be find local coordinates xa = (qi, pj),

where i = 1, . . . , n, such that σ = dpi ∧ dqi.
A Hamiltonian function H : M → R induces dynamics on M according to the evolution

equation
dxa

dt
= σab∂bH , σacσcb = δab , (.0.19)

rewritten in terms of local coordinates (qi, pi) as

dqi

dt
=
∂H

∂pi
,

dpi
dt

= −∂H
∂qi

. (.0.20)

As a matter of fact, for any phase space function f :M → R is possible to define a symplectic
gradient as a vector with components Xa

f = σab∂bf . So, Eq. (.0.19) can be expressed as

dxa

dt
= Xa

H , (.0.21)

where Xa
H is the Hamiltonian flow, and is tangent to the trajectory in M associated with the

dynamical evolution of the system. In general, for any phase space function f , the derivative
along the Hamiltonian flow is

df

dt
= XH(f) . (.0.22)

In particular, H itself is conserved along the flow, and can therefore be set as a constant E,
associated with an energy for a particular trajectory. It is defined a bilinear operation called
Poisson bracket that acts as

(f, g)→ Xg(f) = −Xf (g) = {f, g} , (.0.23)

providing a Lie algebra structure, the Poisson Algebra in which the Poisson brackets satisfy the
Jacobi’s identity. In local coordinates

{f, g} = ∂f

∂qi
∂g

∂pi
− ∂f

∂pi

∂g

∂qi
. (.0.24)

Canonical transformation is a diffeomorphism ψ : M → M, x → x′ = ψ(x) such that σ is
preserved under the pullback transformation ψ : ψ̃(σ) = σ. An infinitesimal canonical transfor-
mation generated by a vector field X is a canonical transformation that maps points of M to
points along the integral lines of X. Then, σ is preserved under an infinitesimal transformation
if LX(σ) = 0, where L is the Lie derivative.

Now, suppose there is a phase space function C : M → R which commutes with H in the
sense of Poisson brackets {H,C} = 0. Then, according to Eq. (.0.22), C is conserved along
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the Hamiltonian flow and constitute a constant of motion. On the other hand, C is associated
with an infinitesimal canonical transformation whose tangent vector is XC , that remains invariant
under the transformation. Such kind of canonical transformation is referred as symmetry, since
transforms the original Hamiltonian system into itself, and consequently, transforms a trajectory
into another trajectory associated with the same energy value E of the aforesaid system. If exist
two conserved quantities, C1 and C2, then using Jacobi identity, it is obtained a third quantity
C3 = {C1, C2} which is conserved, too.

A common case of symplectic manifold is given by the cotangent bundle over a base manifold
that may be considered as a configuration space with local coordinates qi. If exists a metric g
defined on this cotangent configuration, then among all symmetries, one special class is given by
isometries. They are generated by constants of motion C such that the metric is invariant along
C flows, LXC

(g) = 0. Symmetries that are not isometries are typically called hidden symmetries.
Hidden symmetries play an important role in physics. They are commonly quadratic or higher

order in the momenta coordinates [66]. At the quantum level, hidden symmetries explain some
interesting particular properties of the spectra such as the unusual energy levels degeneration.
An important example corresponds to the Kepler-Coulomb [67] problem with its conical section
trajectories that lie in the orthogonal plane to the angular momentum vector which is integral of
the system along with the energy. However, in order to obtain all the geometric properties of the
system there is one more conserved quantity that must be consider, which specifies the orientation
of the trajectories with respect to a particular point. This hidden symmetry is described by the
Laplace-Runge-Lentz integral which is second-order in the canonical momenta. Its quantum ana-
log integral explains the accidental degeneration in the spectrum of the hydrogen atom model [68],
and also, allows to find the spectrum by purely algebraic methods.These methods are attributed
in first instance to Pauli. Unfortunately not all hidden symmetries have a simple geometric inter-
pretation like this example, and in general the study of their geometric interpretation are related
to Killing, conformal Killing and Killing-Yano tensors [66].

C. Point vortices

Let us consider the Euler equation

∂u⃗

∂t
+
(
u⃗ · ∇⃗

)
u⃗ = −∇⃗p+ f⃗ , (.0.25)

where p is the pressure and f is a conservative force. We restricted our study to two dimensions.
By taking the curl in the equation above we obtain the evolution equation of the vorticity

∂ω

∂t
+
(
u⃗ · ∇⃗

)
ω = 0

Dω

Dt
= 0 , (.0.26)

where operator D
Dt is the material derivative and describe the evolution along the flow lines.

From the last equation it corresponds that vorticity is conserved and it is transported along
the flow lines. Supposing the vorticity ω is known it is possible to determine the vector field u⃗
that generates it. In two dimensions we can recast the fluid equations (.0.25) and (.0.26) into a
Hamiltonian formalism. Consider u⃗ = (ẋ, ẏ), we can represent the vorticity functions as

ẋ =
dψ

dy
, ẏ = −dψ

dx
, (.0.27)

by means of ψ called stream function. Formally it plays the roll of Hamiltonian for the pair of
conjugate variables (x, y) and it is used to describe the dynamics of a test particle advected by
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8. Conclusions and Outlook
the flow. Substituting equation (.0.27) into (.0.25) we obtain

∇2ψ(r⃗) = ω(r⃗) , (.0.28)

that is a Poisson equation with ω as source term. Then, inverting the above relation we obtain
the stream function to be

ψ(r⃗) =

∫
dr⃗′G(r⃗, r⃗′)ω(r⃗′) , (.0.29)

where G(r⃗, r⃗′) is the Green function solution to the equation ∇2G(r⃗, r⃗′) = δ(r⃗, r⃗′). For the plane
and the sphere the Green function is

G(r⃗, r⃗′) = −1

4
log|r⃗ − r⃗′|2 , (.0.30)

where |r⃗− r⃗′|2 = (x−x′)2+(y−y′)2. Once specify the vorticity we can compute ψ from equation
(.0.29) and then the vorticity field becomes

u⃗ =

∫
dr⃗′K(r⃗, r⃗′)ω(r⃗′) , (.0.31)

where K(r⃗, r⃗′) = −(r⃗−r⃗′)

2π|r⃗−r⃗′|2
represents the velocity field generated by point vortex. Then, consid-

ering the vorticity field associated with N point vortex as
∑N

n=0 γnδ(r⃗ − r⃗n) we obtain

ψ =
1

4

N∑
n=0

log|r⃗ − r⃗n|2 . (.0.32)

This equation describes the dynamics of a test particle at a point r⃗ = (x, y). In this way, for
N -vortex system we obtain the evolution equations

ẋ = −1

2

N∑
n=0

γm(yn − ym)r−2
nm , , ẏ =

1

2

N∑
n=0

γm(xn − xm)r−2
nm , m = 1, 2, . . . , N (.0.33)

where r2nm = (xn − xm)2 + (yn − ym)2. Kirchhoff showed that the above system can be expressed
in a Hamiltonian canonical form. [69]. The symplectic structure for the system can be obtained
by setting m = 0 in Landau problem, see [70].
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