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Chapter 1

Introduction

Spontaneous Parametric Down-Conversion (SPDC) is a non-linear optical process that serves as the

basis for many quantum optics experiments, such as one-photon interference, biphoton interference,

polarization and interference [1], quantum cryptography [2], quantum simulation [3] and, quantum

metrology [4]. In SPDC one photon of frequency ω is converted spontaneously into two photons at

frequencies ω1 and ω2, which due to energy conservation satisfy ω = ω1 + ω2. Down-conversion is

typically inefficient, with only a small fraction of photons converted in a non-linear crystal. Among the

usual crystals used to do experimental SPDC are KDP and BBO [5], but there are novel materials that

are noncentrosymmetric that have not been studied for quantum optics yet. One of these new material

classes is the metal-organic frameworks (MOF), which can be tailor-designed to be noncentrosymmet-

ric and transparent in visible light, for quantum optics applications.

1.1 Quantum entanglement and Bell states

A bipartite pure quantum state is called entangled when it can not be written as two separate states,

and the quantum state is a superposition of the two pure states [6].

Consider a pure state for a system composed of two spatially separated subsystems,

ρ̂ = |Ψ⟩⟨Ψ|, |Ψ⟩ =
∑
a,b

c(a, b)|a⟩|b⟩ (1.1)

where ρ̂ is the density matrix, |a⟩ and |b⟩ are quantum states for the two subsystems. If c(a, b) is such

that the two particles state |Ψ⟩ factor into a product of wave functions for the two subsystems therefore

|Ψ⟩ = |Ψa⟩|Ψb⟩, (1.2)
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we say that the two subsystems are entangled.

One type of two-particle entanglement was proposed by Einstein, Podolsky and Rosen (EPR) to be

of the form,

|Ψ⟩ =
∑
a,b

δ(a+ b+ c0)|a⟩|b⟩ (1.3)

where a and b correspond to the momentum of each particle and c0 is a constant. For this type of

entangled state, the value of the momentum or the position of one particle is undetermined for a single

individual system. However, if one of the subsystems is measured at a certain value then the other

subsystem also acquires a well-defined momentum. This property was called by EPR as "spooky

action at a distance" [7].

There are several types of entangled quantum states. For this thesis, we focus on polarization

entangled states. Bell states are well-known two particles entangled states, as they occur naturally for

polarization states of entangled photon pairs produced in SPDC [8, 9, 10]. They are four Bell states

which form a complete orthonormal basis and are represented by

|Φ±
12⟩ =

1√
2
[|0102⟩ ± |1112⟩], |ψ±

12⟩ =
1√
2
[|0112⟩ ± |1102⟩], (1.4)

Here the basis |0⟩ and |1⟩ represent two orthonormal polarization basis, for example, if |0⟩ is |V ⟩

(vertical polarization), |1⟩ is |H⟩ (horizontal polarization). To prepare Bell states experimentally, it is

necessary to make the wavepackets overlap in space and time, which makes the quantum mechanically

indistinguishable from each photon subsystem.

This theory to represent entangled quantum states is not amenable to experiments, because this

is convenient to introduce a Bell inequality that is based on the Bell states, and show that the nature

cannot be described by local hidden-variables theory, this inequality can be introduced as follows: Alice

and Bob are in two separate locations. A third actor called Mallory prepares a pair of entangled particles

and sends one to Bob and the other to Alice. When Bob receives the particle he decides to perform

one of two possible measurements. Consider both measurements as binary, this means the measure

can only be +1 or −1 if we denote this measure of Bob like A0 and A1. The same procedure for Bob´s

particle but with a denote measure of B0 and B1, also binary.

If Bob chooses to measure A0 and get +1, then the particle he received has a value of +1 in a

property a0. Considering the following expression

a0b0 + a1b0 + a0b1 − a1b1 = b0(a0 + a1) + b1(a0 − a1) (1.5)
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Because a0 and a1 from the Eq. (1.5) take values of ±1, either the (a0 + a1) is zero or (a0 − a1)

is zero, then one of the two terms will vanish and the other will have a value of ±2. If we do the same

experiment over and over again, with Mallory preparing new pairs of particles for each experiment, then

the average value of the combination of the left-hand side of the Eq. (1.5) across all the experiments will

be equal or less than 2. The expression for this inequality is the following, considering angle brackets

as the average values

⟨A0B0⟩+ ⟨A1B0⟩+ ⟨A0B1⟩ − ⟨A1B1⟩ ⩽ 2 (1.6)

The Eq. (1.6) is called the Bell inequality, more specifically, the CHSH inequality [11]. This derivation

has two assumptions, first that the underlying physical properties a0, a1, b0, a0, a1, b0, and b1b1 exist

independently of being observed or measured, this is also called the assumption of realism, and the

second assumption is that Bob’s action cannot influence Alice’s results or measurement and vice versa,

this is also called the assumption of locality. Violating this inequality implies that the particle that Alice

and Bob receive are entangled.

Some applications of entangled particles are quantum cryptography [12, 13, 14], quantum imaging,

more specifically ghost imaging [15, 16, 17, 18, 19], quantum teleportation [20, 21, 22], among others.

1.2 Optics of uniaxial crystals

Crystals can be classified by the types of symmetry elements that can support their lattice structure. The

most basic symmetry element is the inversion, which transforms (x, y, z) coordinates to (−x,−y,−z)

[23]. Crystals whose unit cells are invariant under inversion are said to not have inversion symmetry

or are called non-centrosymmetric. Chiral crystals do not have an inversion symmetry. Several crystal

classes are non-centrosymmetric (no inversion symmetry).

Typically for a centrosymmetric crystal, the leading contributor for the nonlinear polarization is the

χ(3) third-order susceptibility tensor, but for a non-centrosymmetric crystal we can expand the polariza-

tion and therefore we have contributions of more orders of the susceptibility tensors where χ(2) is the

second-order susceptibility tensor.

Uniaxial crystals are noncentrosymmetric. They have at least one non-zero component of the χ(2)

tensor, also have one axis, called optical axis (OA) or extraordinary axis, with a distinct value of the

refractive index, and two crystal axis having the same index, which is called the ordinary axes.
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For uniaxial crystals the χ(1) susceptibility tensor is

χ(1) =


no 0 0

0 no 0

0 0 ne

 (1.7)

where we take into consideration that the extraordinary axis is in the z coordinate. Some of the crystal

classes for uniaxial crystals are tetragonal, trigonal and hexagonal [24].

Depending on the relative values of no and ne, we can have two types of uniaxial crystals, a positive

uniaxial crystal correspond to a crystal that has a higher value of the extraordinary refractive index ne

than the ordinary refractive index no, for example, the Quartz is a positive uniaxial crystal. The negative

corresponds to uniaxial crystals that have a lower value of the ne than no. Beta-barium borate (BBO) is

a well-known negative uniaxial crystal.

The refractive index of uniaxial crystals (positive and negative) can be described as a function of

wavelength using the Sellmeier equation. This equation is used to determinate the light dispersion

response in the medium. For BBO the corresponding Sellmeier equation reads, this equation is valid in

the range of λmin = 220nm to λmax = 1060nm [25]

n2o = 2.7405 +
0.0184

λ2 − 0.0179
− 0.0155λ2 and n2e = 2.3730 +

0.0128

λ2 − 0.0156
− 0.0044λ2 (1.8)

we have another example, the Sellmeier equations for Quartz, are in the range of λmin = 198nm to

λmax = 2050nm [26], are given by

n2o = 1.28604141 +
1.07044083λ2

λ2 − 1.00585997× 10−2
− 1.10202242λ2

λ2 − 100

n2e = 1.28851804 +
1.09509924λ2

λ2 − 1.02101864× 10−2
− 1.15662475λ2

λ2 − 100
(1.9)

In Fig.1.1 we show the Sellmeier curves for (a) BBO and (b) Quartz, obtained from Eqs.(1.8) and

(1.9), respectively.

Another non-centrosymmetric crystal of interest is the biaxial crystal, that has three different refrac-

tive indexes. If we take into consideration a plane that only contains two of the three axes of a biaxial

crystal, we only gonna have the contributions of two refractive indexes therefore approach a biaxial

crystal into a uniaxial one, this can be done for every biaxial crystal, and will be usefull later in this

Thesis. Some of the crystal classes that are biaxial crystals are Orthorhombic, Monoclinic and Triclinic.

Inorganic crystals are typically used for non-linear optics, such as KH2PO4 (KDP) or BaB2O4

(BBO), because they have large second-order non-linear susceptibility and optical anisotropy in the

visible spectrum and near-infrared, which is exploited for SPDC.
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Figure 1.1: (a) Sellmeier equation for BBO (negative uniaxial), (b) Sellmeier equation for Quartz (pos-
itive uniaxial), where the red line corresponds to the ordinary refractive index and the blue line corre-
spond to the extraordinary refractive index

1.3 Metal-Organic Frameworks

Metal-Organic Frameworks (MOFs) are crystalline materials composed of a metallic center and organic

ligands, and can be tailor-designed based on the way that the ligands and the center self-assemble.

MOF crystals are very promising for applications in nonlinear optics, this is due to the great number of

MOFs that are non-centrosymmetric and show promising optical response [27].

There are currently more than 88.000 MOF structures in the Cambridge Structural Database [28].

There are two main categories for MOF crystals, porous crystals, and nonporous crystals. There are

29.4% porous MOFs and 70.6% nonporous MOFs in the literature [29]. This is relevant because the

main uses for the industry are gas storage and gas separation, which are related properties to the

pore size of the lattice. Fig. 1.2 shows the difference between the two types of MOFs where (a) is a

non-porous crystal and (b) corresponds to a highly porous crystal. Typically the nonporous MOFs are

not very noticeable but for nonlinear optics, the porosity does not matter, this leads us to have a huge

potential in optics because many MOFs crystals nonporous were available in the structural databases.

Recent experimental reports have shown competitive values for second-order [30] and third-order [31]

nonlinear properties for polycrystalline MOF crystals. Due to this high potential in nonlinear properties

such as second-order nonlinearity, the great number of neglected crystals for nonporous crystals, and

the tailor-based design, the MOFs are the perfect new scope to research in nonlinear optics crystals.

Large-scale computational MOF screening methods for applications in gas storage and gas sepa-

ration have been developed, and extensions to these techniques can be developed to discover novel

applications for MOFs in quantum technology, due to the potential nonlinearity of these crystals.

For this work, we focus on selected MOFs that are noncentrosymmetric and transparent thought out

the visible spectrum. To characterize this crystal in non-linear optics we need the Sellmeier equations

and the χ(2) tensor. The selected MOFs are MIRO-101, MIRO-102, and MIRO-103, which have been
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Figure 1.2: (a) Nonporous MOF Cu2(OH)(C8H3O7S)(H2O) · 2H20, adapted from Ref. [32] and (b)
porous MOF CRISPR/Cas9 adapted from Ref. [33].

Figure 1.3: Examples of MOFs with a core of Zn2, (a) correspond to the MIRO-101,(b) correspond to
the MIRO-102, and (c) correspond to the MIRO-103 [27].

studied before for other phase matching conditions in Ref.[34].

1.4 State of the Art

SPDC phenomena have different applications for entangled-photons, such as quantum teleportation

[35], quantum computing [36], quantum communication [37], quantum cloning [38], quantum cryptog-

raphy [39], polarization [40], optical imaging using entanglement photons [41], quantum spectroscopy

[42] and Optical lithography [43] among other.

Typically these experimental applications use the same type of crystals, including lithium niobate,

BBO, and KDP among others. In more recent years quasi-phase matched waveguide crystals are

being used to achieve higher SPDC efficiency, although, in a restricted phase-matching range such as
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a PPKTP, that is a periodically-poled waveguide crystal based on the KTP crystal [44].

The scope of new crystals for entangled photons is not in organic-based crystals such as MOFs,

the objective of this thesis is to enlarge this scope to target this new tailor-based design organic crys-

tals, to do so a comparison between experimentally used crystals and new MOFs crystals with non-

centrosymmetric symmetry is necessary and is provided in this works.
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Chapter 2

Spontaneous Parametric

Down-Conversion (SPDC)

2.1 Fundamentals of SPDC

In a non-linear crystal, for instance, a uniaxial o biaxial crystal, that is pumped by an intense laser

beam at frequency ωp, two weak fields, called signal and idler, are produced at frequency ωs and ωi,

respectively such that ωp = ωi + ωs.

The quantum theory behind the SPDC can be derived from the classical description of non-linear

interaction, followed by the quantization of the electromagnetic field. We expand to second order the

electric polarization of a nonlinear and noncentrosymmetric optical medium gives us

Pi(r, t) = ϵ0

∫ ∞

0

dt
′
χ
(1)
ij (t′)Ej(r, t− t′) +

∫ ∞

0

dt′
∫ ∞

0

dt′′χ
(2)
ijk (t′, t′′)Ej(r, t− t′)Ek(r, t− t′′) (2.1)

where Ej(r, t) is the j component of the electric field vector that propagates in the medium and χ(1)

and χ(2) are the first and second susceptibility tensors, respectively.

To quantize the electromagnetic field, start from, the electromagnetic field Hamiltonian in the dielec-

tric medium of volume V , it is

Ĥ(t) =
1

2

∫
V

dr[D(r, t) · E(r, t) + B(r, t) + H(r, t)] (2.2)

where D is the displacement field vector, B the magnetic induction and H is the magnetic field. Now we

can use the definition of the displacement field D(r, t) = ϵ0E(r, t)+P(r, t), to rewrite the Eq. (2.2), and

the Eq. (2.1) we obtain

Ĥ(t) = Ĥ0(t) + ĤI(t) (2.3)
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In this case, the first term corresponds to the linear interaction of the electric polarization and the second

term is a nonlinear perturbation, given by

ĤI(t) =
1

2

∫
V

dr

∫ ∞

0

dt′
∫ ∞

0

dt′′Ei(r, t)χ
(2)
ijk(t

′, t′′)Ej(r, t− t′)Ek(r, t− t′′) (2.4)

note that we are using the Einstein summation convention to simplify notation. Now we can expand the

classical optical electric field in terms of planes waves as

E(r, t) = E(+)(r, t) +E(−)(r, t) (2.5)

where

E(+)(r, t) =
1√
V

∑
k,σ

ek,σϵk,σαk,σG(ω)exp[i(k · r− ωt)] = [E(−)(k, t)]∗ (2.6)

is the field expansion, with

ϵk,σ =
√

ℏω(k, σ)/2ϵ0n2(k, ω) (2.7)

where the index σ is summed over a two-dimensional orthogonal polarization vector. ϵ0 is the free

space permittivity, G(ω) is a transmission function that models the detector filter, V is the quantization

volume, k is an index summed over all wave vectors, ek,σ is the two-dimensional unit polarization vector,

ω the frequency and αk,σ is the mode amplitude. We adopt the usual method of quantization for the

electric field, substituting the amplitude coefficient αk,σ for the photon annihilation operator âk,σ.

Substituting Eq. (2.6) into the classical Hamiltonian Eq. (2.4) we have a quantum Hamiltonian

operator

ĤI =
1

2ν3/2

∑
ks,σs

∑
kp,σp

∑
ki,σi

g∗ks,σs
g∗ki,σi

g∗kp,σp
a†ks,σs

a†ki,σi
akp,σp

exp[i(ωs + ωi − ωp)t]

× χijk(eks,σs)
∗
i (eki,σi)

∗
j (ekp,σp)k

∫
V

e[−i(ks+ki−kp)·r] dr +H.C. (2.8)

where s, i, p correspond to the signal, idler, and pump field respectively.

gk,σ = i

√
ℏω(k, σ)

2ϵ0n2(k, σ)
G[ω(k, σ)] (2.9)

V is the interaction volume and H.C. stands for the Hermitian conjugate, n(k, σ) is the linear refractive

index of the anisotropic crystal.

To obtain the quantum state produced by SPDC, we assume that the nonlinear interaction is turned

on at time t0 = 0 when the system is in the initial state |ψ(0)⟩. The state at time t is given by the time

evolution by

|ψ(t)⟩ = U(t)|ψ(0)⟩ (2.10)
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with the time evolution operator

U(t) = e(
−i
ℏ

∫ t
0
dtHI(τ)) (2.11)

when the pump field is sufficiently weak, we can expand the evolution operator in power series, then

we integrate over space the r that leads to a sinc function involving the wave vector, which provides the

conservation of momentum

∫ t

0

dtHI(τ)) =
V t

2ν3/2

∑
ks,σs

∑
kp,σp

∑
ki,σi

g∗
ks,σs

g∗
ki,σi

g∗
kp,σp

a†ks,σs
a†ki,σi

akp,σp e[i(ωs+ωi−ωp)t/2]

× χijk(eks,σs
)∗i (eki,σi

)∗j (ekp,σp
)ksinc[(ωs + ωi − ωp)t/2]

×
∏
m

sinc[(ks + ki − kp)mlm/2]e
[−i((ks+ki−kp)zlz/2] +H.C. (2.12)

where V = lx × ly × lz and lm is the dimension of the nonlinear medium in the direction m = (x, y, z).

For more details in the volume integral, see Appendix A.1.

Now we can finally derive an expression for the quantum state as time t, using Eq. (2.12) on Eq.

(2.10) and considering the initial state as vacuum we obtained:

|ψ(t)⟩ = |vac⟩+ V t

2iℏν3/2
∑
ks,σs

∑
kp,σp

∑
ki,σi

g∗
ks,σs

g∗
ki,σi

g∗
kp,σp

αp(kp, σp) e[i(ωs+ωi−ωp)t/2]

× χijk(eks,σs
)∗i (eki,σi

)∗j (ekp,σp
)ksinc[(ωs + ωi − ωp)t/2]

×
∏
m

sinc[(ks + ki − kp)mlm/2] exp[−i((ks + ki − kp)zlz/2]|ks, σs⟩|ki, σi⟩ (2.13)

where |ks, σs⟩ and |ki, σi⟩ denote the Fock states for the signal and idler respectively, and αp(kp, σp)

is a classical amplitude corresponding to the plane wave component (kp, σp) of the pump beam, that

replace the annihilation operator for the pump modes. We simplify the equation (2.1), using the following

approximations:

(a) The interaction time is long enough, so the sinc function for the frequencies are only relevant

when ωp = ωs + ωi. The power of the pump laser is moderate so that the time interval between two

down-conversion events is large compared to the detection time.

(b) The frequency spread of the detectable down-converted fields is small compared to the central

frequencies so that the dispersion of the refractive indices around the central frequencies ωj is small and

a linear approximation can be used. This assumption is justified by the use of narrow-band interference

filters in front of the detectors.

(c) The terms gkj ,σj and χ(2)
ijk are slowly-varying functions of kj , so they may be taken as constants

in the intervals considered for kj .

(d) The pump beam propagates along the z-axis and the crystal is large enough in the x and y

directions to contain the whole pump beam transverse profile. In this case, lx and ly can be extended
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to infinity, and the last term in the third line of expression (2.1) is proportional to

δ(qs + qi − qp)sinc[(ksz + kiz − kpz)L/2] (2.14)

where qj = (kjx, kjy) is the transverse component of kj and L = lz is the crystal propagation length

(thickness).

(e) The quantization volume is large enough to justify the replacement of summations over k by

integrals.

Under these assumptions, Eq. (2.1) is written as

|ψ⟩ = |vac⟩+
∑
σs,σi

∫
dωs

∫
dωi

∫
dqs

∫
dqiΦσs,σi

(qs, qi, ωs, ωi)|qs, ωs, σs⟩|qi, ωi, σi⟩ (2.15)

where |qj , ωj , σj⟩ represents a one-photon state in the mode defined by the transverse component qj

of the wave vector, by the frequency ωj and by the polarization σs. The amplitude Φ is given by

Φσs,σi
= Cσs,σi

GsGiα(qs + qi, ωs + ωi)sinc[(ksz + kiz − kpz)L/2] (2.16)

where Cσs,σi is a coupling constant that depends on the nonlinear susceptibility tensor, and G(ωj) is

the spectral function defined by the narrow bandwidth filters placed in front of the detectors.

2.2 Phase matching

SPDC consists of the interaction of a nonlinear crystal with a photon that leads to the annihilation of

this photon and the creation of two photons of lower energies, this procedure needs to satisfy energy

and momentum conservation conditions, these conditions are

ωp = ωs + ωi, kp = ks + ki (2.17)

where ωj and kj are the frequency and the wavevector of the photon j (j = s, i, p), respectively, the

first equation is due to energy conservation, and the second is called the phase matching equation.

Satisfying both Eq. (2.17) is known as perfect phase matching.

There are two types of SPDC, which differ from each other in the type of polarization that the SPDC

phenomena generates, the first one is called SPDC Type I and have the property to generate two

photons with the same polarization, and perpendicular polarization to the converted photon (photon

that is converted in two photons via SPDC), otherwise the Type II SPDC has the property to generate

two photons with perpendicular polarization to each other, and one of them have the same polarization

that the converted photon. In this thesis, the center of the study will be SPDC Type II. The types of
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Type I Type II
Negative e⇒ o, o e⇒ o, e
Positive o⇒ e, e o⇒ o, e

Table 2.1: Types of polarization for Type I and Type II SPDC, where the left-hand of the arrow corre-
sponds to the converted photon and the two on the right hand of the arrow correspond to the generated
photons, e is the extraordinary polarization and o is the ordinary polarization.

polarization are shown in the table 2.1.

For the two generated photons in SPDC type II, shown in table 2.1, the polarization can be switched

between them, for instance, the o,e polarization in Type II SPDC positive can be switched as e,o and

have the same physics.

2.2.1 Type II Phase matching: planar case

For this thesis, the focus will be on Type II SPDC for positive and negative uniaxial.

We consider type-II phase matching. The pump wavevector kp makes an angle Ψ with the Optical

Axis (OA) inside the crystal, as illustrated in Fig. (2.1). We are interested in how the output angles θoe

and θoo change as a function of wavelength for a given OA angle Ψ. The vectorial wavevector condition

∆E = 0 gives a system of equations for the components that read

ke cos θe + ko cos θo = kp. (2.18)

ke sin θe = ko sin θo (2.19)

where ko, ke, and kp are the vectorial wavevector for the ordinary, extraordinary, and pump photon,

respectively. θe and θo are the angles between the ordinary and extraordinary wavevector, and the

normal to the plane of incidence of the pump photon, respectively. Note that the pump has extraordinary

polarization. For an extraordinary ray that is not traveling in the optical axis (OA) direction, the effective

refractive index is given by

neff(λe, φe) =

√
cos2(φe)

n2o(λe)
+

sin2(φe)

n2e(λe)
(2.20)

where e is the wavelength of the extraordinary field, φe is the angle between the extraordinary photon

and the optical axis inside the crystal, e is the extraordinary refractive index and o is the ordinary

refractive index. The wavevector for extraordinary and ordinary waves is then
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Figure 2.1: non-collinear type-II phase matching in the planar case. Note that all wavevectors lie in the
plane defined by the OA and the pump wavevector (kp), the angle between OA and kp is Ψ = θe +φe .
kp and ke are polarized in the direction of extraordinary ray (↕) and ko is polarized in the direction of
ordinary ray (⊙). Adapted from Ref. [45].

kp(λp,Ψ) =
2πneff(λp,Ψ)

λp
,

ke(λe,Ψ) =
2πneff(λe, φe)

λe
, (2.21)

ko(λo) =
2πno(λo)

λo

where Φ is the angle between the pump wave and the optical axis, solving Eq. (2.19) for ko,

ko(λo) cos θo =

√
k2o(λo)− k2e(λe, φe) sin

2 θe (2.22)

then we replace these results with the Eq. (2.22) on the Eq. (2.19)

ke cos θe +

√[
2πno(λo)

λo

]2
−
[
2πneff(λe, φe)

λe

]2
sin2 θe =

2πneff(λp,Ψ)

λp
(2.23)

Using the energy conservation from Eq. (2.17) and knowing that λ = 2πc
ω , the expression for the

energy conservation is the following

λo =
λeλo
λe − λp

The internal angle θe can then be converted to the outside angle θoe and θoo by using Snell’s law, with

14



Figure 2.2: Tuning curve for BBO (negative uniaxial) Type II SPDC, with a pump wavelength of 400nm
and a θc of 42.347deg.

an outside refractive index ni = 1, this means that the photon is coming from the air to the crystal. The

e-polarization outside angle is

θoe = sin−1(neff(λe, φe) sin θe) (2.24)

and the o-polarization outside angle is

θoo = sin−1

(
λo
λe
neff(λe, φe) sin θe

)
(2.25)

The outside angles θoe , θ
o
o as a function of λ for a fixed λp are known as the "tuning curves" for

Type-II SPDC. In Fig. 2.2 we show the tuning curves for a BBO crystal with a fixed value of λp = 400nm

and a c = 42.347deg.
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2.3 Hermite-Gauss Basis

To make the subsequent calculations of the canonical quantization of the electromagnetic field simpler,

we express the transverse momentum components of the field in terms of Hermite-Gaussian modes.

Let q denote the projection of the momentum k onto the transverse plane so that k = q + kz ẑ and

ẑ is the propagation direction along the optical axis, this means Φ = 0. Since both plane waves and

Hermite–Gaussian wavefunctions form a complete basis in 2D space, we can express the creation

operator as a sum over the transverse mode creation operator a†(µ⃗,kz,s)
, indexed by s (which can take

one of two values for each transverse direction), where µ⃗ is a vector denoting the horizontal and vertical

indices of a Hermite–Gaussian mode of the form (Here, µ⃗ is an ordered pair of non-negative integers

corresponding to the horizontal and vertical mode index, respectively).

a†(q⃗,kz,s)
=
∑
µ⃗

C̃q⃗,µ⃗ a
†
(µ⃗,kz,s)

(2.26)

this change of basis is unitary. With this established, we can express the displacement field operator

D̂−(r⃗, t) in terms of the Hermite–Gauss basis.

The transverse spatial dependence D̂−(r⃗, t) for a given Hermite–Gauss mode indexed by µ⃗ relies

on the sum

∑
q⃗

C̃µ⃗,q⃗ e
−q⃗·r⃗ =

√
LxLzgµ⃗(x, y) (2.27)

where we have defined gµ⃗(x, y) to be the normalized Hermite–Gaussian wavefunction associated with

the index µ⃗. Finally, using the paraxial approximation (so that the frequency ω only depends on kz), the

displacement field operator becomes

D̂−(r⃗, t) = −i
∑

µ⃗,kz,s

√
ϵ0n2kz

ℏωkz

2Lz
ϵ⃗kz,s gµ⃗(x, y)e

−ikzzeiωtâ†µ⃗,kz,s
(2.28)

here, we point out that â†µ⃗,kz,s
(t) = eiωtâ†µ⃗,kz,s

with this displacement field operator expressed in this

new basis (Hermite-Gaussian), we are ready to obtain a nonlinear Hamiltonian, similar to Eq. (2.12).

We consider a monochromatic pump beam with peak magnitude |D0
p|, frequency ωp, polarization

ϵp, and (non-normalized) spatial dependence fp(r⃗) given by

D⃗p(r⃗, t) = |D0
p |⃗ϵpfp(r⃗) cos(ωpt) (2.29)
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we can factor out the linear phase due to propagating the beam, giving us:

fp(r⃗) = G̃p(r⃗)e
−ikzz (2.30)

where G̃p(r⃗) will describe the rest of the Gaussian pump beam, so that:

G̃p(r⃗) =
σp
σ(z)

exp(−x
2 + y2

4σ(z)2
)exp(−ikz

x2 + y2

2R(z)
)exp(itan−1(

z

zr
)) (2.31)

The first term of Eq. (2.31) governs the evolving spatial amplitude of the beam; the second exponen-

tial describes the propagation and curvature of the phase fronts, while the last exponential describes

the Guoy phase. we use the simplifying approximation that the pump beam is collimated, so that we

may neglect the Guoy phase and curvature of the phase fronts in our calculations. σ(z) is the evolving

beam radius

σ(z) ≡ σp

√
1 + (

z

zr
) 2, (2.32)

R(z) is the evolving radius of curvature of the wavefronts

R(z) ≡ z

[
1 +

(
z

zr

)2
]
, zR ≡

4πσ2
p

λp
(2.33)

and zr is the Rayleigh length, such as σ(zr) =
√
2σp.

The power delivered by the Gaussian pump beam, in units of energy per second is then

P = c
|D0

p|2

n3ϵ0
πσ2

p (2.34)

which is equal to the mean intensity of the beam times its effective area.

Including these expressions for the displacement field operators and the classically bright pump

field, the nonlinear effective Hamiltonian that describes SPDC becomes

ĤNL =

∫
d3r(ζ

(2)
eff |D

0
p|G̃∗

pe
ikpzzeiωpt

×− i
∑

µ1,k1z

√
ϵ0n21ℏω1

2Lz
gµ1(x, y)e

−ik1zzeiω1tâ†µ⃗1,k1z,s
(2.35)

×− i
∑

µ2,k2z

√
ϵ0n22ℏω2

2Lz
gµ2(x, y)e

−ik2zzeiω2tâ†µ⃗2,k2z,s
+H.c.)
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where ζ
(2)
eff is the effective second-order inverse optical susceptibility tensor. Furthermore, we have

already performed the sum over the components of the inverse susceptibility. After algebraic simplifica-

tions, we obtain

ĤNL =
ℏ|E0

p |
2Lz

∑
µ1,k1z

∑
µ2,k2z

√
ω1ω2

n21n
2
2

∫
d3r(χ

(2)
eff (r⃗)G

∗
p(r⃗)gµ⃗1

(x, y)gµ⃗2
(x, y)e−i∆kzz)

× ei∆ωtâ†µ⃗1,k1z,s
â†µ⃗2,k2z,s

+H.c. (2.36)

here we have switched from ζ
(2)
eff to the effective nonlinear susceptibility χ(2)

eff using the following ap-

proximation:

−ϵ20 ζ2eff n2p n21 n22 ≈ χ
(2)
eff (2.37)

which is satisfied under the same lossless media assumption that allowed us to invoke full permutation

symmetry [46].
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2.4 Effective Nonlinearity

Considering the polarization inside a nonlinear material as:

Pi(t) = ϵ0χ
(1)
ij Ej(t) + ϵ0χ

(2)
ijkEj(t)Ek(t) + .... (2.38)

where χ(1)
ij and χ(2)

ijk are the first-order linear susceptibility tensor and the second-order nonlinear sus-

ceptibility tensor, respectively.

The electric displacement vector is given by

D(r, ω) = ϵ0E(r, ω) + P (r, ω) (2.39)

The polarization vector can be written as the sum of the linear part and a nonlinear part

P (r, ω) = PL(r, ω) + PNL(r, ω) (2.40)

The linear part, or the first element in the Eq. (2.1), can be written as

PL
i (r, ω) =

3∑
j=1

ϵ0χ
(1)
ij (ω)Ej(r, ω) (2.41)

where i = 1, 2, 3 and j = 1, 2, 3 represent the three cartesian indices x, y, z, respectively. Assuming

that the material is homogeneous, we have that χ = χ(ω).

From this, we can rewrite the electric displacement field as

D(r, ω) = ϵ̄0 · E(r, ω) + PNL(r, ω) (2.42)

where ϵ̄0 = ϵ0[1 + χ(1)(ω)], and is called the dielectric tensor. If we only consider the second order of

the nonlinear polarization or the second term in Eq. (2.1), the nonlinear polarization can be written as

PNL(r, ω) = P
(2)
j (r, ω)

= ϵ0

∫
dωa

∫
dωb

∑
lm

χ
(2)
jlm(ωp, ωa, ωb)δ(ωp − ωa − ωb)El(r, ωa)Em(r, ωb) (2.43)

where for SPDC El and Em correspond to the signal and idler electric fields, ωa, and ωb are the

frequencies for the signal and idler photons.

Since the reality condition also applies to the second-order nonlinear polarization, χ(2)∗
jml (ωp, ωa, ωb) =

χ
(2)
jml(−ωp,−ωa,−ωb). We can start the calculation of the effective nonlinear susceptibility using the
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second-order nonlinear susceptibility tensor as [45]

dijk =
ϵ0
2
χ
(2)
ijk (2.44)

where the effective nonlinearity is given by

deff =
∑
ijk

dijke
s
i e

i
je

p
k (2.45)

where s, i, p correspond to the signal, idler, and pump beam, respectively, and ei, ej , ek correspond

to the polarization vector in the x, y, z cartesian coordinate, respectively. Now we can assume the

following conditions, to introduce a symmetry condition of the tensor dijk. The material is lossless,

this implies that we have a full permutation symmetry i.e the indices can be permuted as long as the

frequencies are permuted as well.

This condition is called the Kleinman symmetry condition, which implies that the value of deff is

independent of the position of the signal and idler fields in Eq. (2.45).

The dijk tensor has 27 elements. where i, j, k denote cartesian coordinates. Explicitly we have

dijk =


d111 d112 d113 d121 d122 d123 d131 d132 d133

d211 d212 d213 d221 d222 d223 d231 d232 d233

d311 d312 d313 d321 d322 d323 d331 d332 d333

 (2.46)

where 1 refers to the x coordinate of the crystal, 2 to the y coordinate, and 3 to the z coordinate. The z

coordinate coincides with the optical axis in uniaxial crystals.

For SPDC type II the interaction of polarizations occurs as follows. For negative uniaxial crystals, we

have an incident extraordinary polarization and the two orthogonal polarizations as output (e ⇒ e, o),

and for positive uniaxial crystals, we have an incident ordinary polarization and the same output as the

negative uniaxial (o ⇒ e, o). This reduces the number of elements of the tensor that is relevant in Eq.

(2.46). For the coordinate system represented in Fig. 2.3 (a) and (b), we can write the components of

the electric field of the ordinary ray as

E⃗o = Eeoj (2.47)

20



where, 
sin(ϕ)

− cos(ϕ)

0

 = oj (2.48)

and the components of the extraordinary ray as

E⃗e = Eeej (2.49)

where 
− cos(θ) cos(ϕ)

− cos(θ) sin(ϕ)

sin(θ)

 = ej (2.50)

where ϕ is the projection of the propagation vector in the plane yc − xc of Fig. 2.3 (a), and for collinear

SPDC θ is equaled to θc is the angle between the normal to the incident plane and the OA.

For type II SPDC in a negative uniaxial crystal the polarization is calculated as

P e
eo(ω3) = eidijk(ω3, ω2, ω1)ejokEj(ω2)Ek(ω1) (2.51)

and for a positive uniaxial crystal, we have that

P o
eo(ω3) = oidijk(ω3, ω2, ω1)ejokEj(ω2)Ek(ω1) (2.52)

where P (ω) is the dielectric polarization of the crystal at the pump frequency of ω3. Using the Kleinman

symmetry conditions for the Eq. (2.51) and Eq. (2.52) we can swap the position of the extraordinary

and ordinary ray of outputs as needed.

For negative uniaxial crystal, we used the expression of Eq. (2.49) and Eq. (2.47) to replace Eq.
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(2.51) to obtain

deff = dxxx cos
2(θ) cos2(ϕ) sin(ϕ)− dxxy cos

2(θ) cos3(ϕ)

+ dxyx cos
2(θ) cos(ϕ) sin2(ϕ)− dxyy cos

2(θ) cos2(ϕ) sin(ϕ)

− dxzx cos(θ) sin(θ) cos(ϕ) sin(ϕ) + dxzy cos(θ) sin(θ) cos
2(ϕ)

+ dyxx cos
2(θ) sin2(ϕ) cos(ϕ)− dyxy cos

2(θ) cos2(ϕ) sin(ϕ)

+ dyyx cos
2(θ) sin3(ϕ)− dyyy cos

2(θ) sin2(θ) cos(θ)− dyzx cos(θ) sin(θ) sin
2(ϕ)

+ dyzy cos(θ) sin(θ) cos(ϕ) sin(ϕ)− dzxx sin(θ) cos(θ) cos(ϕ) sin(ϕ)

+ dzxy sin(θ) cos(θ) cos
2(ϕ)− dzyx sin(θ) cos(θ) sin

2(ϕ)

+ dzyy sin(θ) cos(θ) sin(ϕ)cos(ϕ) + dzzx sin
2(θ) sin(ϕ)− dzzy sin

2(θ) cos(ϕ) (2.53)

analogously we can obtain a similar expression but for positive uniaxial using the Eq. (2.52).

2.5 Glauber two-photon correlation function

The spectral and temporal properties of the biphoton state, as the state in Eq. (1.2), is determined by

the joint spectral function (Φ(∆k)), Eq. (2.16). The arrival times for all the photon pairs emitted by the

crystal are detected in a coincidence setup and the probability of detecting two-photon pairs at diferent

times t1 and t2 are proportional to the correlation function G(2)(t1, t2) is given by

G(2)(t1, t2) = |⟨0|
(
Ê(+)(t2)Ê

(+)(t1)
)
|Ψ2⟩|2 (2.54)

where the electric field operators are given by Eq. (2.6) and take into account any spectral filtering

done at the detectors. If we assume that this correlation depends only on a relative time τ = t1 − t2,

this can be done because we are only considering the pump as a Gaussian beam and the Hermite-

Gauss basis for the two generated photons, in other words, there is not a spatial dependency for the

correlation assuming a Hermite-Gauss basis for the generated photons. The right-hand side of Eq.

(2.54) is proportional to the frequency spectrum of the light as

G(2)(τ) ≈ |I0(τ)|2 (2.55)

and the frequency spectrum of the light is given by:

I0(τ) =

∫ ∞

−∞
dνΦ

(
∆kL

2

)
e
−
(

v2

σ2

)
e−iντ (2.56)
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where ν is a small detuning frequency and Φ(x) is known as the joint spectral function (JSA) of the Eq.

(2.16) [45].

Now for type II SPDC the expansion of k with respect to detuning from perfect phase matching can

be expressed

ki = Ki + v
dki
dωi

∣∣∣∣∣
Ωi

(2.57)

where the expansion was made around the central frequency of the Gaussian beam ωi and Ki is the

wavevector with a frequency of ωi, Ωi = ωi ± ν, and i = o, e correspond to the ordinary and the

extraordinary rays respectively. Since ∆k = 0 at perfect phase matching, we have

∆k = νD (2.58)

where

D =
dko
dωo

∣∣∣∣∣
Ωo

− dke
dωe

∣∣∣∣∣
Ωe

(2.59)

Ωo and Ωe as the central frequencies for the ordinary and the extraordinary waves respectively, the

two derivatives expressions in Eq. (2.59) are the inverse of the group velocity and can be derived

numerically from the Sellmeier equation of the crystal. The Glauber correlation function for Type II

SPDC is then given by

G(2)(τ) ≈
∣∣∣∣∫ ∞

−∞
dνΦ(vDL/2)e

−
(

ν2

σ2

)
e−ivτ

∣∣∣∣2 (2.60)

where Φ(x) is the JSA of the Eq. (2.16), but because we neglected the amplitudes the joint spectral

function is proportional to the sinc(νDL/2), and σ corresponds to the bandwidth of the filter in the

detector and τ = t1 − t2 with t1 and t2 are the detection times for the two generated photons. In Fig.

2.4, we show the Glauber biphoton correlation function for a BBO crystal with a pump wavelength of

532nm and a detector bandwidth of 1nm.

From the Glauber correlation function, we can obtain a correlation time between the two photons

generated by the SPDC. For BBO (Fig. 2.4) this correlation time is 441.806fs.
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2.6 Biphoton generation rate

Using first-order time-dependent perturbation theory, we can calculate the biphoton rate. To do so, we

take the initial state of the down-converted fields to the vacuum state and the final state to be a biphoton

with a Hermite-Gauss mode number and momenta (knz, µ⃗n) with n = 1, 2 representing the signal and

idler photon. The transition probability is given by:

Pk1z,µ⃗1,k2z,µ⃗2
≡ | ⟨µ⃗1, k1z, µ⃗2, k2z|Ψ(t)⟩ |2

≈ |⟨µ⃗1, k1z, µ⃗2, k2z|
(
1− i

ℏ

∫ t

0

dt′HNL(t
′)

)
|0, 0⟩|2 (2.61)

Where the expression in parenthesis comes from the first-order perturbation theory of the time

propagation operator. Substituting the non-linear Hamiltonian expression on the Eq. (2.61), we obtain

Pk1z,µ⃗1,k2z,µ⃗2
=

|E0
p |2

4L2
z

ω1ω2

n21n
2
2

×
∣∣∣∣∫ d3r(χ2

eff (r⃗)G
∗
p(r⃗)gµ⃗1

(x, y)gµ⃗2
(x, y)e−i∆kzz)

∣∣∣∣2 ∣∣∣∣∫ t

0

ei∆ωt′
∣∣∣∣2 (2.62)

where we can define

Wk1z,µ⃗1,k2z,µ⃗2
=

|E0
p |2

4L2
z

ω1ω2

n21n
2
2

×
∣∣∣∣∫ d3r(χ2

eff (r⃗)G
∗
p(r⃗)gµ⃗1

(x, y)gµ⃗2
(x, y)e−i∆kzz)

∣∣∣∣2 (2.63)

to simplify the notation. We can further simplify this expression by using the fact that the magnitude of

a complex number does not depend on the phase

Pk1z,µ⃗1,k2z,µ⃗2
= Wk1z,µ⃗1,k2z,µ⃗2

∣∣∣∣sinc(∆ωt

2

)
t

∣∣∣∣2
×

∣∣∣∣∫ t

0

dt′ei∆ωt′
∣∣∣∣2 (2.64)

and taking into consideration that we can take the limit when t becomes large, we obtain

Pk1z,µ⃗1,k2z,µ⃗2
≈ Wk1z,µ⃗1,k2z,µ⃗2

(2πδ(∆ω))

∣∣∣∣∫ t

0

dt′ei∆ωt′
∣∣∣∣ (2.65)

In practice, we need t to be much larger than the inverse of ∆ω, this can be archived for times much

longer than picosecond times scales that light takes to travel through the crystal, but not so large that

multiple biphotons are likely to be generated in time t. The range of frequencies defining the width ∆ω
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is known as the phase matching bandwidth, and commonly is in the range of 10−13 − 10−14 seconds

for known optical crystals. Now we can define the transition rate as Rk1z,µ⃗1,k2z,µ⃗2
is defined as the

time derivative of the transition probability P , and if we take times much longer than picosecond this

transition rate is constant and have the following form:

Rk1z,µ⃗1,k2z,µ⃗2
≈ Wk1z,µ⃗1,k2z,µ⃗2

2πδ(∆ω) (2.66)

To calculate the total transition rate for down conversion into a single pair of transverse modes

Rµ⃗1,µ⃗2
, we must add all the transition rates for all values of k1z and k2z:

Rµ⃗1,µ⃗2
=

∑
k1z,k2z

Rk1z,µ⃗1,k2z,µ⃗2
(2.67)

if we take in consideration that the large of the crystal Lz is much longer than the wavelength of the

light passing through it, we can approximate the sums over k1z and k2z as integrals:

∑
≈
(
Lz

2π

)2 ∫
dk1zdk2z (2.68)

now this equation can be expressed as an integral over the frequencies as the following expression:

(
Lz

2π

)2 ∫
dk1zdk2z ≈

(
Lz

2π

)2
ng1ng2
c2

∫
dω1dω2, (2.69)

where ng1 and ng2 are the group index at the signal and idler frequency respectively. The single-mode

transition rate Rµ⃗1,µ⃗2
is thus given by

Rµ⃗1,µ⃗2
=

∫
dω1dω2Wk1z,µ⃗1,k2z,µ⃗2

L2
zng1ng2
2πc2

δ(∆ω), (2.70)

where Wk1z,µ⃗1,k2z,µ⃗2
is expressed in terms of the frequencies ω1 and ω2. Then the total rate R is the

sum over all transverse modes µ⃗1 and µ⃗2of the single-mode rates.
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2.7 The bulk crystal regime: photon-pair brightness

The biphoton generation rate depends on the overlap integral Φ(∆kz), this function is called the joint

spectral function Eq. (2.16)

|Φ(∆kz)|2 ≡
∣∣∣∣∫ d3r

(
χ2
eff (r⃗)G

∗
p(r⃗)gµ⃗1

(x, y)gµ⃗2
(x, y)e−i∆kzz

)∣∣∣∣2 (2.71)

The simplest case to solve is that of the collimated Gaussian pump beam incident on an isotropic rect-

angular crystal of dimensions Lx × Ly × Lz centered at the origin of a Cartesian coordinate system

with ẑ pointing along the optic axis. If we make the additional assumption that we are collecting the

down-converted light into single-mode fibers, then only the photons generated in the zeroth-order Her-

mite–Gaussian modes will contribute to the rate of detected events. In this case, Gp(r⃗), gµ⃗1
, and gµ⃗2

are all Gaussian functions, so that |Φ(∆kz)|2 becomes

|Φ(∆kz)|2 =

(
χ
(2)
eff

2πσ2
1

)2 ∣∣∣∣∣
∫ −Lz/2

Lz/2

dze−i∆kzz

∣∣∣∣∣
2

×

∣∣∣∣∣
∫
dxdy e

[
−(x2+y2)

(
1

4σ2
p
+ 2

4σ2
1

)]∣∣∣∣∣ (2.72)

where we assume that the filters for both detectors have the same bandwidth σ1 = σ2. To make

the limits of the integral over x and y arbitrarily large, it only suffices that the transverse width of the

crystal is larger than the dimensions of both the Gaussian pump beam and of the signal and idler

modes. Moreover, in single-mode nonlinear waveguides, light can be confined to a much smaller beam

diameter without diverging. With these assumptions, the overlap integral simplifies significantly to

|Φ(∆kz)|2 = (2χ2
effLz)

2sinc2
(
∆kzLz

2

) ∣∣∣∣∣ σ2
p

σ2
1 + 2σ2

p

∣∣∣∣∣
2

(2.73)

Now we can have an expression for the total rate for down-conversion,R, using as a Gaussian beam

the pump beam into another Gaussian signal-idler mode, in terms of the signal and idler frequencies

ω1 and ω2 as

R =

∫
dω1dω2

|E0
p |2(χ

(2)
eff )

2L2
z

2πc2
ng1ng2
n1n2

∣∣∣∣∣ σ2
p

σ2
1 + 2σ2

p

∣∣∣∣∣
2

ω1ω2δ(∆ω)sinc
2

(
∆kzLz

2

)
(2.74)
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where from energy conservation we have that

ωp = ω1 + ω2 (2.75)

Now we can integrate over one of the frequencies using the delta function in this case, we gonna

integrate over the frequency ω2 to obtain

R =

∫
dω1

|E0
p |2(χ

(2)
eff )2L2

z

2πc2
ng1ng2
n1n2

∣∣∣∣∣ σ2
p

σ2
1 + 2σ2

p

∣∣∣∣∣
2

ω1(ωp − ω1)sinc
2

(
∆kzLz

2

)
(2.76)

where the phase matching is

∆kz = k(ω1) + k(ωp − ω1)− k(ωp) (2.77)

27



Figure 2.3: Configuration for the estimation of the deff , where the superscripts L and C correspond
to the laboratory frame (blue axis) and crystal frame (red axis) respectively, the o corresponds to the
ordinary ray, e corresponds to the extraordinary ray and θc is the angle between the optic axis and the
propagation vector, for this work this θc is equal to the phase matching angle (θPM ) due to the collinear
conditions assumed, kp is the pump photon, ks and ki are the signal and idler photons respectively,
and k is the photon inside the crystal, σp is the bandwidth of the Gaussian pump beam, and σs and σi
correspond to the bandwidth of the signal and idler photons respectively. Where (a) correspond to the
lab frame and (b) the crystal frame.
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Figure 2.4: G(2) function for BBO with a pump wavelength of 532nm and a θc of 42.347deg, this function
was calculated using Eq. (2.60).
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Chapter 3

Type II SPDC in metal-organic

frameworks waveguides

For this Thesis, we focus on three MOF crystals: MIRO-101, MIRO-102, and MIRO-103. Previously

work was done for Type I degenerate collinear SPDC for the three MOFs of interest by the investigation

group [34]. MIRO-101 and MIRO-102 are uniaxial crystals and MIRO-103 corresponds to a biaxial

crystal, which as we saw in Chapter 1.2, can always be treated as a uniaxial crystal if we take control

of the crystal orientation.

In this chapter, we compute the numerical effectiveness of a crystal to generate entanglement pho-

ton pairs by SPDC using the single-mode waveguide counting rate, given by Eq. (2.76).

The calculation of biphoton entangled state in Type II SPDC can be summarized by the following

steps:

1. Get Sellmeier equation from the crystal structure via ab initio calculations of electronic structure

such as density-functional theory (DFT).

2. Obtain the tuning curves from Eq. (2.25) and Eq. (2.24), using the Sellmeier equations for

the crystal. The tuning curves give access to the outside angles, where the photon pair may be

detected for a given pump wavelength (λs and λi). In this thesis, we focus on coplanar degenerate

type II SPDC, which means that the target outside angles are zero and λs = λi.

3. Calculate the group velocity of the two refractive indexes, no and ne, at the signal and idler

wavelength using the Sellmeier equation.

4. Calculate the effective nonlinearity of the crystal with the same optical axis that was used for the

tuning curves, this deff can be maximized relative to Φ, using for example the Eq. (2.53), for Type

II negative uniaxial.
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5. Calculate the G(2) function around the perfect phase matching to estimate a correlation time.

6. Calculate using the correlation time, the deff optimized, and the group velocity calculated before

the numbers of entangled photon pairs generated, via SPDC using Eq. (2.76) to do so.

Following these steps, an estimation of the effectiveness of a crystal to generate entangled biphoton

generations can be done and are useful to compare with the crystals typically used in the industry and

experiments, such as BBO and KDP.

3.1 Sellmeier equations for MOFs

In this Thesis, all the calculations for Sellmeier equations were previously done using the DFT method

in our group [27]. The Sellmeier equations for MIRO-101 are

n2o = 2.1078 +
2.51× 10−2λ2

λ2 − 1.41489044× 105
+

1.0871λ2

λ2 − 5.62150205× 104
, (3.1)

n2e = 1.7833 +
8.9× 10−3λ2

λ2 − 1.44323712× 105
+

0.36470λ2

λ2 − 4.9620289× 104
(3.2)

with λ in nm. For MIRO-102 we have

n2o = 2.1385 +
1.1527λ2

λ2 − 4.77658824× 104
+

7.66× 10−2λ2

λ2 − 1.16666067× 105
, (3.3)

n2e = 1.7890 +
5.03× 10−2λ2

λ2 − 1.07012455× 105
+

0.7432λ2

λ2 − 3.58417385× 104
(3.4)

and for MIRO-103, we have

n2o = 1.9010 +
5.1430× 10−1λ2

λ2 − 5.12308938× 104
+

0.0408λ2

λ2 − 1.57385759× 105
, (3.5)

n2e = 2.0731 +
1.2882λ2

λ2 − 5.76235328× 104
+

0.0107λ2

λ2 − 1.59071640× 105
(3.6)

Using these Sellmeier equations we calculated the group velocity for ki and ks, this group velocities are

discussed in Eq. (2.57) as the inverse of dki

dωi
and dks

dωs
, for signal and idler respectively. The difference

between the group velocities of signal and idler is D from Eq. (2.59).
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Crystal d
(opt)
eff [pmV −1]

MIRO-101 0.72338
MIRO-102 0.16119416
MIRO-103 0.12194346

Table 3.1: deff optimized for the three MOFs crystals, where 101 and 102 are negative uniaxial and 103
is positive uniaxial.

3.2 Tuning curves

For the calculation of the tuning curves of the MOF crystals, we set the angle between the optical axis

(OA) and the normal vector to the plane of incidence, such that θoo = 0 and θoe = 0 for degenerate

SPDC type II, as shown in Fig. 2.1. Using the Sellmeier equations from the previous section and Eqs.

(2.24,2.25), we can calculate the tuning curves for the MOFs with a pump wavelength λp = 532nm

In Fig. 3.2 (a), (b), and (c) we show the tuning curves for MIRO-101, MIRO-102, and MIRO-103,

respectively. Using these tuning curves we obtain the value for the optical axis angle, and as we mention

before, to get θo = θe = 0 (collinear) for λo = λe (non-degenerate) we need to find the appropriate

value for the θc (optical axis).

3.3 Effective nonlinearlity for MIRO type II phase matching

As we mentioned at the beginning of this Chapter, the effective nonlinearity deff is calculated using Eq.

(2.53) for negative uniaxial crystals, for positive uniaxial we use a similar expression based on Eq.(2.52),

we need to use the full tensor dijk from Eq. (2.46) which was previously calculated by our group [27] for

the MOF crystals of interest. In each case (positive or negative uniaxial), the only variable that remains

free is the azimuthal angle ϕ, shown in Fig. 3.2, we thus maximize the value of deff obtaining the curve

deff(Φ) and optimizing numerically.

In Fig. 3.3 we show deff(Φ) for the three MOFs of interest. In Table 2.1 we show the optimized

values for deff

3.4 Glauber biphoton correlation function

Assuming a detector bandwidth σ = 1nm and a crystal with thickness L = 1mm, we calculate the

Glauber correlation function (G(2)) as a function of a time difference t = t1 − t2, where t1 and t2

correspond to the time that a photon is detected on the first detector and the time that a photon is

detected on the second detector, respectively. The results are shown in Fig. 3.4 for the three MOFs of

interest. Table 3.2 lists the corresponding correlation times for the three MOFs.

From Fig. 3.4, we can obtain the value of the correlation times for all three MOFs, which are in table

3.2.
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Crystal R× 106[s−1mW−1mm−1] τL[fs]
MIRO-101 0.01023349 480.82
MIRO-102 0.0008119 303.68
MIRO-103 0.00040078 566.75

Table 3.2: The number of pair photons generated (R) for second of pumped photons, milliwatts of power
pumped and millimeter of the length of the crystal for the three MOFs crystals, and correlation time τL
by Type II SPDC, where 101 and 102 are negative uniaxial and 103 is positive uniaxial.

3.5 Number of entangled photons pairs generated in collinear SPDC

As we discussed in Section 2.7, we need the value for the bandwidth of the filters for the signal and

idler, σi = σs = σ1, this means that we are using two detectors with the same properties for detecting

the signal and the idler photon, and a value for the Gaussian modes for the pump photon σp. We

use the same values in Ref. [47], for the case of Type II SPDC with a single-mode waveguide of a

PPKTP crystal. We thus set σ1 = 1.875 and σp = 0.875. The pump wavelength used is the same

for the calculation of the tuning curves, λp = 532nm. The thickness of the crystal is the same used

for the calculations of G(2) L = 1mm, this allows to report the number of photon pairs generated by

Type II SPDC per second, per milliwatts of pump power, per millimeter. We use Eq. (2.76) to calculate

the counting rate of single-mode photon pairs generated R. The value for d(opt)eff was calculated in the

previous section, the Table 3.2 shows the value for the counting rate of biphotons generated by Type

SPDC.

We estimate that the most efficient MOF crystal for generating entangled photon pairs via SPDC

is MIRO-101. To compare the efficiency of the MIRO-101 to industrial used crystals, we consider the

PPKTP crystal [47] with R = 1.112264 × 106 per second of pumped photons, milliwatts of power

pumped, and millimeters of crystal length. Compared to PPKTP previously mentioned, the MIRO-101

crystal has a 0.92% of efficiency. Worth mentioning that MOFs are tailor-design crystals, so having

a crystal such as the MIRO-101 that has a 1% approximate effectiveness compared to new crystals

introduced in the industry, marks a point to study these MOF crystals for designing a new crystal that

can be compared with PPKTP or any crystal used in industry.
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Figure 3.1: Sellmeier equation for (a) MIRO-101 negative uniaxial crystal, (b) MIRO-102 negative uni-
axial crystal and (c) MIRO-103 positive uniaxial crystal , where the red line correspond to no and the
blue line corresponds to ne from the Eq. (3.1) to Eq. (3.6).
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Figure 3.2: Tuning curves for the MOF (a) MIRO-101 (negative uniaxial), OA = 28.6, (b) MIRO-102
(negative uniaxial), OA = 36.85 , (C) MIRO-103 (positive uniaxial), OA = 36.2 with a λp = 532[nm] for
the three MOFs, the orange curve correspond to the photon with extraordinary polarization and the blue
curve correspond to the photon whit ordinary polarization, and the pump has an ordinary polarization.
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Figure 3.3: Plot of deff versus the angle of the projection of k in the plane Xc-Yc (ϕ), from Fig. 3.2, for
the three MOF crystals, MIRO-101, MIRO-102 and MIRO-103

Figure 3.4: Glauber Correlation function (G2) for the MOFs MIRO 101, MIRO 102, and MIRO 103,
where t is the difference time of detection for the two photons generated by SPDC.
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Chapter 4

Conclusion and Outlook

In this Thesis, we have calculated the efficiency of nonlinear organic crystals for generating biphoton

entangled states. Specifically, we estimated the number of photon pairs generated by spontaneous

parametric down-conversion (SPDC) in single-mode waveguides to estimate the efficiency of three

Metal-Organic Framework crystal (MOF) MIRO-101, MIRO-102, and MIRO-103 under strong classical

pumping. The Theory is summarized at the beginning of Chapter 4. The calculations for the estimation

of the nonlinear susceptibility tensor χ(2) for each MOF were previously done by our group, using density

functional theory (DFT). The calculation was done for a pump wavelength of λp = 532nm and taking

into consideration a Gaussian beam as the pump and for the biphoton generation a Hermite-Gauss

basis for the transverse modes waveguide in 2D.

The type of crystals typically used in industry for biphoton entangled generation are BBO, KDP,

and Lithium Niobate, in most recent years, quasi-phase matched waveguide crystals are being used to

achieve higher SPDC efficiency. For this thesis, we consider new MOF materials as a proof-of-concept

to the development of tailor-designed non-linear crystals, which can extend the experimental scope

studies of entangled photon pairs generation in quantum technology.

As an outlook, this work can be extended to study large databases of MOF crystals in the literature.

In general, we found that MOFs have relative competitive efficiency relative to industrial materials such

as quasi-phase matched waveguide crystals. Large-scale studies are feasible because our multi-scale

computational method is scalable, which can be useful for studying crystals databases of MOFs and

other non-centrosymmetric crystals.
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Appendix A

A.1 Phase matching integral

The integral that we need to solve looks like

I =

∫ r/2

−r/2

e−ikxdx (A.1)

solving this integration, we obtain

I =
2ie(−ikr/2)

k
− 2ie(ikr/2)

k
(A.2)

then

2ie(−ikr/2)

k
− 2ie(ikr/2)

k
=

2

k

(
ie(−ikr/2) − ie(ikr/2)

)
(A.3)

where

(
ie(−ikr/2) − ie(ikr/2)

)
= sin

kr

2
(A.4)

Finally, the integral becomes

2 sin kr
2

k
= sinc

kr

2
(A.5)
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A.2 SI Units

χ(2) [pmV −1]

d
(2)
eff [pmV −1]

D [ mHz ]

λ [nm]

OA [deg]

Table A.1: Relevant Units
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