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Abstract

Up until today, Dark Matter is one of the most important problems yet to solve in physics and

there are several approaches to try and learn more about its nature and general properties.

We have focused our study on trying to delimit the parameter space that allows us to recreate

the data obtained up until today. In this master’s thesis, we consider a cosmological scenario

different than the one presented by ΛCDM to explore different possibilities to explain the

dark matter present in the universe in relation to its production mechanism and stability as

well as its interactions with other particles, within the standard model or the hidden sector.

We implemented a non-standard cosmology that considers the presence of an additional field

responsible to dominate the energy density of the universe prior to primordial nucleosynthesis.

We perform a detailed analysis of the effects of the presence of this field in relation to the

expansion of the universe and the dark matter relic density for different scenarios and apply

these effects to the known results of stability of dark matter candidates affected by resonant

decay processes. We analyze the decay of dark matter candidates in exponentially efficient

processes and define bounds that allow to explain the dark matter relic density on each model.

We present results that can account for the total dark matter density present today for a wide

parameter space of the coupling of the models and the mass of the dark matter candidates.

This manuscript is organized as follows, in the first chapter, we do an overview of cosmology

and general concepts necessary for this work. Then, we present the dark matter candidates

of interest and their production mechanisms. Also, we present the essentials of non-standard

cosmology and implement it to compare it with the stipulated by ΛCDM to show the crucial

differences in the expansion of the universe and the dark matter relic density for different

cosmological scenarios. Finally, we implement these results on two different models for dark

matter candidates and show the impact on the parameter space that allows to account for the

dark matter energy density at the present day in several cosmological cases in comparison to

the results obtained by ΛCDM.
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Resumen

A d́ıa de hoy, la Materia Oscura es uno de los problemas más importantes en la f́ısica que se encuentra aún

por resolver y existen múltiples ángulos para tratar de aprender más sobre su naturaleza y propiedades

generales. Hemos centrado nuestro estudio en intentar delimitar el espacio de parámetros que nos permita

recrear los datos obtenidos al d́ıa de hoy. En esta tesis de maǵıster, consideramos un escenario cosmológico

diferente al presentado por ΛCDM para explorar diferentes posibilidades de explicar la materia oscura

presente en el universo en relación a su mecanismo de producción y estabilidad aśı como sus interacciones

con otras part́ıculas, dentro del modelo estándar o en el sector oscuro. Implementamos una cosmoloǵıa no

estándar que considera la presencia de un campo adicional responsable de dominar la densidad de enerǵıa

del universo previo a la nucleośıntesis primordial. Realizamos un análisis detallado de los efectos de la

presencia de este campo en relación a la expansión del universo y la densidad de reliquia de la materia

oscura para diferentes escenarios y aplicamos estos efectos a resultados conocidos respecto a estabilidad de

candidatos a materia oscura afectados por procesos de decaimiento resonante. Analizamos el decaimiento

de candidatos a materia oscura en procesos exponencialmente eficientes y definimos restricciones que

permitan explicar la densidad de reliquia de materia oscura en cada modelo. Presentamos resultados

que pueden dar cuenta del total de materia oscura presente hoy para un amplio espacio de parámetros

de el acoplo de los modelos y la masa de los candidatos a materia oscura.

Este escrito está organizado de la siguiente manera, en el primer caṕıtulo, realizamos una revisión de

cosmoloǵıa y conceptos generales necesarios para este trabajo. Luego, presentamos los candidatos a

materia oscura de interés y sus mecanismos de producción. Además, presentamos los puntos esenciales

de la cosmoloǵıa no estándar y lo implementamos para compararlo con lo estipulado por ΛCDM para

mostrar las diferencias cruciales en la expansión del universo y la densidad de reliquia de materia oscura

para diferentes escenarios cosmológicos. Finalmente, implementamos estos resultados en dos modelos

diferentes de candidatos a materia oscura y mostramos el impacto en el espacio de parámetros que

permite dar cuenta de la densidad de materia oscura al d́ıa de hoy en diferentes casos, en comparación

a los resultados obtenidos por ΛCDM

Palabras clave: Cosmoloǵıa, Materia oscura, Resonancia paramétrica, Mecanismo de misalignment

ii



Acknowledgements

I would like to express my gratitude to my advisor, Dr. Paola Arias, for her assistance and support

throughout every step of the project, and for her patience and encouragement to reach further.

I would like to express my complete gratitude to ANID, for funding my Masters’s degree study with the

scholarship ANID-Subdirección de Capital Humano/ Maǵıster Nacional/ Año 2022 - 28122021.
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Chapter 1

Introduction

The Standard Model of Particle Physics (SM) is one of the most successful theories developed in the

last decades, with incredible precision and predictions related to how the universe works under three of

the fundamental interactions, corresponding to electromagnetic, weak, and strong forces, but it is still

an incomplete theory. The SM lacks a Dark Matter (DM) candidate who is stable, cold, and weakly

coupled, it also does not provide a clear way to explain the matter-anti-matter asymmetry and the big

structure formation [1, 2], among others. This motivates us to consider new physics beyond SM. In this

chapter, we will take a look at the theoretical concepts that allow us to dive into the DM problem.

1.1 Dark Matter

The DM problem is one of the most important questions in modern cosmology. It is responsible for

approximately 26% of the universe’s energy density [3] but its nature is still unknown.

One of the first indicators of the existence of the DM came from astronomical observations related to

the rotation curves of galaxies [4, 5]. It was shown that the predictions corresponding to the rotation

velocity of galaxies produced by their baryonic matter were much smaller than the measurements, as

we move away from their center. This, among other puzzling observations, lead to considering a matter

component different from the ordinary baryonic mass in the form of a halo of nonluminous unknown

matter, which was named Dark Matter. To explain the data, a galaxy’s total matter must consist of

more than 95% of DM, these results are shown if Fig. (1.1), where we can see that the DM consideration

gives us a good fit to the data [6].

1



1.2. Overview of Cosmology Chapter 1. Introduction

Figure 1.1: Data of the galactic rotation curve for NGC 6503 of the disk and gas contribution
plus DM halo needed to fit the data (from [6]).

Measurements of the Cosmic Microwave Background (CMB) provide outstandingly precise values of

several cosmological parameters and it also provides us with evidence for the existence of DM hidden

in its temperature anisotropies. The CMB is the remnant radiation from recombination era where the

first atoms were formed, therefore, contains information related to the early stages of the universe. As

the plasma collapsed inwards by gravitational effects, the photon pressure created a resistance. This

struggle between pressure and gravitation created a distinctive pattern of peaks in the CMB spectrum.

The study of those temperature fluctuations allowed us to estimate the amount of gravitational matter

present in the early universe, in fact, this alone provides enough evidence for the existence of DM [6].

Another way to confirm the existence of DM has been found in gravitational lensing, since gravitational

effects of energy density alter the light patterns, the data obtained from galaxies clusters [7] require the

existence of DM.

Besides the data that gives us reasons to study physics beyond SM, we have no certainty about the

nature of DM although there has been found several conditions that must be fulfilled to consider a viable

DM candidate.

In the next chapter, we will do a brief review of DM candidates and their important features related to

this work.

1.2 Overview of Cosmology

Our current understanding of the evolution of the universe is based on the Friedman-Robertson-Walker

(FRW) cosmological model. It is also known as Standard Cosmology or ΛCDM. Direct evidence sup-

porting its validity extends back to the epoch called Big-Bang Nucleosynthesis, about 102 s after the

Big-Bang. This model considers the matter and radiation distribution of the universe to be homogeneous

and isotropic at large scales.

The metric for a space with homogeneous and isotropic spatial sections is the maximally-symmetric FRW

metric, which can be written as

2



Chapter 1. Introduction 1.2. Overview of Cosmology

ds2 = dt2 −R2(t)

(
dr2

1− kr2
+ r2dθ2 + r2 sin2 θdϕ2

)
(1.1)

where t is the physical time, R(t) is the cosmic scale parameter and k is the spatial curvature constant.

To further analyze the dynamics of the expanding universe, it is necessary to look at the scale factor

using Eintein’s equations

Rµν − 1

2
Rgµν ≡ Gµν = 8πGTµν + Λgµν , (1.2)

where Gµν is the Einstein tensor, Tµν is the stress-energy tensor, and Λ is the cosmological constant. If

we look at Einstein’s equations and the fact that the stress-energy tensor Tµν takes into account all the

fields present, we see that to be consistent with the symmetries of the metric, Tµν must be diagonal, and

by isotropy, all the spatial component must be equal. Let us then consider a perfect fluid characterized

by ρ(t) as its energy density and p(t) its pressure, we obtain:

Tµ
ν = diag(ρ,−p,−p,−p). (1.3)

Requiring the conservation of the stress energy-momentum tensor (Tµν
;ν = 0) we obtain the continuity

equation for the µ = 0 component

d(ρR3) = −pd(R3). (1.4)

This allows us to obtain a simple relation between the energy density and the scale parameter. If we

consider the simple equation of state for a perfect fluid, p = ωρ, we obtain

ρ ∝ R−3(1+ω). (1.5)

Moreover, going back to the Einstein equations for the FWR metric we obtain the Friedmann equations.

H2 +
k

R2
=

8πG

3
ρ+

Λ

3
, (1.6)

R̈

R
= −4πG

3
(ρ+ 3p). (1.7)

where we have introduced H = Ṙ
R , called the Hubble parameter and Λ is associated to the dark energy

density. Our study is focused on the early stages of the universe, thus we will set Λ = 0. Equations (1.6)

and (1.7) describe the evolution of the universe for any given energy content. We can rearrange eq. (1.6)

to express a few useful parameters by

k

H2R2
=

ρ

3H2/8πG
− 1 ≡ Ω− 1 (1.8)

where Ω is the density parameter defined as the ratio of the density to the critical density:

Ω ≡ ρ

ρC
, ρC =

3H2

8πG
. (1.9)

we see clearly that the sign of k depends on this ratio, e.g. for ρ = ρC we obtain a flat universe.

3



1.3. Early Universe Thermodynamics Chapter 1. Introduction

It is important to notice that ρ and p are composed by all the fields’ contributions so we obtain a density

ratio for each field as well.

A few important parameters in the present universe are [3]

H0 ≈ 100h km s−1 Mpc−1, ρC ≈ 3.44× 10−47 GeV−4. (1.10)

and related to the density parameter for dark energy, radiation, and matter respectively

ΩΛ,0 ≈ 0.68, (1.11)

Ωr,0 ≈ 10−5, (1.12)

Ωb,0 ≈ 0.04, (1.13)

ΩDM,0 ≈ 0.26, (1.14)

where b corresponds to the baryonic matter and the subindex 0 represents the value at the present time. It

is important to mention thatH0 presents a very important challenge in modern physics due to the Hubble

tension, which corresponds to the disagreement found between the estimations of considering ΛCDM and

the measurements related to the luminosity distance and redshift of known standard candles[8, 9].

Due to the observational data, the universe is considered to be flat at large scales [1], then considering

Eq. (1.6) we obtain the relation

H2 =
8πG

3
ρ. (1.15)

It is important to notice that Friedmann equations lead us to the continuity equation, via deriving Eq.

(1.6) and then replacing Eq. (1.7), which gives us the evolution of energy density in an expanding

universe, given by

ρ̇+ 3H(ρ+ p) = 0, (1.16)

and we notice that considering the equation of state and Eq. (1.15), this is consistent with Eq. (1.5),

which is related to the conservation of the stress-energy tensor.

1.3 Early Universe Thermodynamics

Before going on to discuss the early radiation-dominated epoch of the universe, it is useful to recall some

basic thermodynamical concepts, such as the number density n, energy density ρ, and pressure p of a

particle species, as functions of the phase space distribution function f(p⃗):

n =
g

(2π)3

∫
f(p⃗)d3p, (1.17)

ρ =
g

(2π)3

∫
E(p⃗)f(p⃗)d3p, (1.18)

p =
g

(2π)3

∫
|p⃗|2

3E
f(p⃗)d3p, (1.19)
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Chapter 1. Introduction 1.3. Early Universe Thermodynamics

where we consider a weakly-interacting gas of particles with g internal degrees of freedom and E2 =

|p⃗|2 + m2. For a species in kinetic equilibrium, the phase distribution f is given by the well-known

Fermi-Dirac or Bose-Einstein distributions:

f(p⃗) = [exp{((E − µ)/T )} ± 1]
−1

, (1.20)

where µ is the chemical potential of the species, and here the plus and minus signs correspond to the

Fermi-Dirac and Bose-Einstein species, respectively.

We see that in the relativistic limit (T ≫ m) that the energy density satisfies ρ ∝ T 4 then we can express

the energy density and pressure of all species in equilibrium in terms of the photon temperature T as

ρR = T 4
∑

i=allspecies

(
Ti

T

)4
gi
2π2

∫ ∞

xi

(u2 − x2
i )

1/2u2du

exp{(u− yi)} ± 1
, (1.21)

pR = T 4
∑

i=allspecies

(
Ti

T

)4
gi
6π2

∫ ∞

xi

(u2 − x2
i )

3/2du

exp{(u− yi)} ± 1
. (1.22)

where xi ≡ mi/T, yi ≡ µi/T , and Ti correspond to the species temperature, which could be different

than that of the photons.

Since the energy density and pressure of a non-relativistic species are exponentially smaller than that

of a relativistic species, it is very convenient and a good approximation to include only the relativistic

species in Eqs. (1.21) and (1.22), in which case we obtain:

ρR =
π2

30
g∗T

4, (1.23)

pR = ρR/3 =
π2

90
g∗T

4, (1.24)

where g∗ counts the total number of effectively massless degrees of freedom. Its explicit expression is

given by

g∗ =
∑

i=bosons

gi

(
Ti

T

)4

+
7

8

∑
i=fermions

gi

(
Ti

T

)4

. (1.25)

We see then that g∗ is a function of T . For instance, for T ≪ MeV , the only relativistic species are the

3 neutrino species and the photon so we have g∗ = 3.36, where we have considered that the neutrino

temperature is different from that of the photons. For T ≳ 300GeV , all the species in the standard

model should have been relativistic and we obtain g∗ = 106.75. We can see the dependence of g∗(T )

upon T in Fig. (1.2).

Another important concept to study in the history of the universe is entropy. Looking at the early stages,

it is possible to consider that the reaction rates of particles in the thermal bath were much greater than

the expansion rate H, and local thermal equilibrium should have been maintained, in this case, the

entropy per comoving volume element should have remained constant, i.e.,

d(sR3) = 0. (1.26)

5



1.3. Early Universe Thermodynamics Chapter 1. Introduction

Figure 1.2: The evolution of g∗(T ) as a function of the temperature in the Standard Model [10].

Let us consider the second law of thermodynamics as well as the equilibrium expressions for the pressure

and energy density, then we obtain the relation

dS =
1

T
d[(ρ+ p)V ]− V

T
dp, (1.27)

this allows us to relate the energy density and pressure:

dp =
ρ+ p

T
dT, (1.28)

replacing this expression in Eq. (1.27) we obtain that the entropy per comoving volume is given by

S = R3(ρ+ p)/T , and using the energy conservation d[(ρ+ p)V ] = V dp, we obtain

d

[
(ρ+ p)V

T

]
= 0 (1.29)

which, defining the entropy density s as

s ≡ S

V
=

ρ+ p

T
, (1.30)

proves Eq. (1.26).

We see now that since the entropy density is dominated by the contribution of relativistic particles, we

could make the approximation

s =
2π2

45
g∗ST

3, (1.31)

where

g∗S =
∑

i=bosons

gi

(
Ti

T

)3

+
7

8

∑
i=fermions

gi

(
Ti

T

)3

. (1.32)

Now, using Eq.(1.26) we can express the evolution of the temperature of the universe, in the form

6



Chapter 1. Introduction 1.4. Big-Bang Nucleosynthesis

ds

dt
+ 3Hs = 0. (1.33)

which, written in terms of the scale factor R instead of time yields

dT

dR
= −

(
1 +

T

3g∗S

dg∗s
dT

)−1
T

R
. (1.34)

Finally, we can express Eq.(1.15) in terms of the temperature if we consider a universe dominated by

radiation, Eq. (1.23), as

H(T ) =

√
π2g∗(T )

30

T 4

3M2
P

(1.35)

where MP is Planck’s mass given by M2
P = 1/8πG. We can see from the conservation of entropy (Eq.

(1.26)), that Eq. (1.31) allows us to relate the scale factor with the temperature at two different points,

in relation to their entropy.

1.4 Big-Bang Nucleosynthesis

Primordial nucleosynthesis or Big-Bang nucleosynthesis (BBN) is one of the strongest supports to ΛCDM,

in fact, is both the earliest and most stringent test of the theory, and an important probe of cosmology

and particle physics. Today, the agreement between theory and observation indicates that the standard

cosmology is a valid description of the Universe at least back to times as early as 102 s after the Big-

Bang with temperatures as high as 10 MeV, where the Universe was dominated by radiation. It gives

us numerous constraints on particle physics and cosmology, e.g., the abundance of light elements such

as 4He, D, 3He in accordance with measures around 1% of precision. These predictions show great

consistency with the observational data for 4He and 7Li, two isotopes whose abundance is barely affected

by chemical and stellar evolution [11]. Furthermore, these isotopes determine the value of the baryon-

to-photon ratio η to be of order 10−10 which also coincides with the data [12]. This matching between

the data and the predictions, among other constraints [1], reveals that the universe had to be radiation

dominated at BBN, although BBN is the cornerstone of the cosmological model, prior to this epoch

stretches a period of cosmic history that is not completely constrained by observations. In the next

chapters, we will look at this point and the theories that allow us to study physics beyond SM.

7



Chapter 2

Dark Matter Candidates

As we have mentioned before, the DM problem is one of the most important questions yet to be solved

in modern physics. In this chapter, we will briefly discuss some of the most successful and promising

DM candidates, in relation to their consistency with the conditions required to be considered as DM,

their predictions with respect to the data obtained until today, and the mechanisms from which they are

created in the early universe.

A few decades ago, it seemed reasonable to consider that DM might consist of substellar objects or stellar

remnants, stars that simply were too faint to have yet been discovered. These candidates were named

massive compact halo objects or MACHOs. But a combination of theory and observations have ruled

them out to be able to solve de DM problem since, at best, they could be responsible for a small fraction

of the DM in de Milky Way [13].

This allows us if we suppose the DM to be a particle, to consider that it must be nonbaryonic, and

must have a good fit with the data associated with the CMB and BBN epoch. One of the most popular

candidates is the weakly interacting massive particles (WIMPs). They arise naturally in various theories

beyond SM, e.g., the neutralino in the minimal supersymmetric standard model [14], the Kaluza-Klein

particle in models of universal extra dimensions [15] and the lightest particle in Little Higgs models [16].

It is important to stress that none of these models was proposed to solve de DM problem, the candidates

come for free.

An important feature of WIMPs is that their mass range goes from 1 to 105 GeV [17]. The most out-

standing observation is that the thermal production of WIMPs leads to the correct relic DM abundance

(Eq. (1.14)) after their freeze-out from the thermal plasma, (if we assume they have weak-force interac-

tions with the SM) which is usually referred to as the ”WIMP miracle”, moreover, the result is almost

independent of the WIMP’s mass and serves to motivate the interest in WIMP DM further.

Another promising candidate comes from considering an extra U(1) symmetry kinetically mixed with the

electromagnetic U(1) of the SM. This corresponds to an extra photon-like particle, the so-called Hidden

Photon (HP). The name comes from the idea that the interaction between these new particles and those

of the SM is extremely weak, and their effects would simply be too feeble to have been observed yet,

referred to belong to a so-called hidden sector. This candidate has been studied in various systems [18,

19, 20] and we will focus on a possible model where it constitutes the DM.

And last, but considered to be one of the most famous DM candidates, we have the Axion, or Axion-

like Particles (ALPs). The first, initially proposed as a solution to the Strong-CP problem of Quantum

Chromodynamics [21, 22]. The Axion is a (pseudo) Nambu-Goldstone boson that arises as a consequence

8



Chapter 2. Dark Matter Candidates 2.1. Production Mechanisms

of the Peccei-Quinn mechanism.

The study of ALPs provides us with a better understanding of the production mechanisms and bounds

related to their couplings and masses.

2.1 Production Mechanisms

Here we will do a brief review of some light DM production mechanisms, which gives us a different

approach related to the relic abundance and the characteristic of the produced particles. First, we can

consider thermal production. In [23] they studied the rate for thermal production of axions via the

scattering of quarks and gluons and it is shown that the axion population can still be relativistic today.

The production of thermal axions can be described by the Boltzmann equation and the interaction rate

of all processes involving axions. It is found that the relic abundance depends on the thermal history of

the universe, in the standard freeze-out scenario [24] and the production of thermal axions is too small

and too hot to explain the DM in the typical scenario for the decay constant Fa ≃ 109−12 GeV [25].

There are also various studies related to DM production due to the decay of topological defects, formed

after a phase transition during the early universe [26, 27, 28]. For some scenarios, DM from topological

defects can account for the whole DM relic density, although those predictions are still under dispute

[29, 30].

For the study related to this thesis, we are particularly interested in non-thermal production mechanisms

due to the nature of the DM candidates. We will focus on bosonic candidates, who are susceptible to

Bose-Enhancement effects [31, 32]. Since the DM candidate is required to be stable, i.e., having an

average lifetime of at least the age of the universe (1017 s), the spontaneous decay rate can be used to

set a restriction between their defining parameters, the mass and the coupling constant to other fields.

This means that if we consider a DM candidate, which has a very low mass and a coupling that allows it

to be sufficiently long-lived, we may require it to have enormous amounts of it to be able to deplete the

DM energy density. One important feature of non-thermal production is that it could generate particles

that are non-relativistic at the present time.

In the next section, we are going to present some very important features of the misalignment mechanism

and how it allows us to consider a field that oscillates on time and has a very well-defined frequency. It

is used in models related to axions and ALPs.

2.1.1 Misalignment Mechanism

Considering a simple Lagrangian density for a scalar field a, given by

L =
1

2
∂µa∂

µa− 1

2
m2

aa
2, (2.1)

using the FRW metric we obtain the EoM to be

ä+ 3Hȧ+m2
aa− ∇2

R2
a = 0. (2.2)

Here we can interpret that the field evolves with an oscillatory behavior with the presence of a damping

term, which in certain regimes can give us an overdamped solution. We can now expand the field1 a(x)

in its momentum modes

1In the following and for the sake of clarity we will refer to this field as axion, even though our only assumption
has been is a scalar field, of a light mass.

9



2.1. Production Mechanisms Chapter 2. Dark Matter Candidates

a(x) =

∫
d3keik·xak, (2.3)

which gives us from Eq.(2.2)

äk + 3Hȧk +

(
m2

a +
k2

R2

)
ak = 0. (2.4)

Here it is important to consider two cases related to the momentum. For the modes outside the horizon,

i.e., k/R < H, if we consider the regime where ma ≪ H, the EoM gives

äk + 3Hȧk = 0, (2.5)

and its solution is given by ak(t) = α1+α2t
−1/2, which indicates that the dominant solution is a constant

value and the modes of low momentum are considered to be frozen.

Then considering the momentum modes inside the horizon (k/R > H) the general solution for the EoM

is given by

ak =
C

R(t)
cos

(∫ t

dt′
k

R(t′)

)
. (2.6)

We see here that since we are considering the regime for relativistic axions (H, k/R ≫ ma), the energy

density satisfies ρa ∝ ȧk
2 ∝ R−4, this indicates us that these correspond to relativistic modes, where

axions dilute as radiation. Therefore, the above modes will just dilute with the expansion of the universe.

The first modes, very close to the zero mode, froze outside the horizon, and keep their energy intact.

These modes are the ones that can seed the dark matter particles.

We know that as the universe expands, H decreases so the frozen modes, i.e., the modes outside the

horizon, eventually can enter the horizon, this happens approximately at H ∼ ma. In this case, we solve

the EoM using a WKB approximation. Let us consider

a(t) = A(t)eiϕ(t), (2.7)

which gives us from the EoM the equations for the Real and Imaginary parts to be

Ä

A
− ϕ̇2 + 3H

Ȧ

A
+m2

a = 0, (2.8)

Ȧ+

(
ϕ̈

2ϕ̇
+

3

2
H

)
A = 0. (2.9)

With WKB we consider the solution to have an amplitude that varies slowly in time, i.e., ( ÄA , H Ȧ
A ) ≪ ϕ̇

so we can neglect the A derivative terms in Eq. (2.8) to obtain

ϕ(t) = mat+ C1. (2.10)

Replacing in Eq. (2.9) we obtain

10



Chapter 2. Dark Matter Candidates 2.1. Production Mechanisms

A =
C√
R3ma

, (2.11)

so, finally, the solution for the field is given by

a(t) =
C√
R3ma

cosmat, (2.12)

which as we expected, consists on an oscillatory field with a frequency equal to the mass of the field. If

we take a look at the energy density of the axion field we see that considering ρa ≃ 1
2m

2
a⟨a⟩2 we obtain

that ρa ∝ R−3 which is the same behavior as ordinary matter. Furthermore, if the universe evolves

adiabatically, we obtained that since R ∝ T−1, we can relate the energy density with the temperature

like ρa ∝ T 3.

This mechanism also can give us the solution for the QCD axion, which has a temperature-dependent

mass. The general solution is given by

aQCD(t) = a0

√
ma(Tosc)R3

osc

ma(T )R3(T )
cos

(∫
dt′ma(t

′)

)
. (2.13)

where Tosc is the temperature which satisfies 3H(Tosc) = ma(Tosc) which corresponds to the point where

the field starts to oscillate, and Rosc = R(Tosc). The energy density is given by

ρa =
1

2
m2

a⟨a⟩2 −→ ρa,0(T0) =
1

2
a20ma(T0)ma(Tosc)

(
Rosc

R0

)3

. (2.14)

Here we can use the expression for the entropy S = sR3 which considering Eq. (1.31) gives us

S =
2πg∗S(T )

45
T 3R3. (2.15)

We can now rearrange Eq. (2.14) to include the conservation of entropy given by

s0R
3
0 = soscR

3
osc →

(
Rosc

R0

)3

=
s(T0)

s(Tosc)
=

g∗S(T0)

g∗S(Tosc)

(
T0

Tosc

)3

. (2.16)

Replacing the above relation in Eq. (2.14), and using Eq. (1.35) in the relation 3H(Tosc) = ma(Tosc) to

express Tosc, we obtain, if we consider a constant mass for simplicity

ρa(T0) = 0.13× 10−13 eV4
( a0
1011GeV

)2√ ma

1eV
F(Tosc), (2.17)

where F(Tosc) = (g∗(Tosc)/3.36)
3/4(3.91/g∗S(Tosc) ∼ 1 [33]. This study allows us to connect the field’s

energy density with the actual DM abundance given by ΩDM,0 = 0.26. Since we require the field to

start oscillating before the matter-radiation equality (Te ∼ 1.3 eV), the mass is required to satisfy

ma > 3H(Te) = 1.8× 10−27 eV, which sets a bound to the model to obtain a result consistent with the

current data, given by

ρa,0 < 3.2× 10−15 eV4 ma

1 eV

( a0
TeV

)2
. (2.18)

This gives us a bound for the mass of the field.

We can also look at a more general form for the DM energy density, since we know that ρdm ∝ R−3, we

11



2.1. Production Mechanisms Chapter 2. Dark Matter Candidates

can use the relation between R and T for each cosmological epoch to express the DM energy density as

a function of temperature. This feature and the effects of considering a different cosmological history in

this relation are presented in the next chapter. For the DM energy density, considering the axion to be

responsible for all the DM energy density, using Eq. (2.12) we can express

ρa = ρdm(R) = ρdm,0

(
R0

R

)3

, (2.19)

where the subindex 0 indicates the value at the present time. This allows us to relate the DM energy

density with the temperature. As mentioned before, if we consider the universe to evolve adiabatically,

Eq. (1.31) gives us

ρdm(T ) = ρdm,0
g∗S(T )

g∗S(T0)

(
T

T0

)3

, (2.20)

where the term g∗S(T )
g∗S(T0)

accounts for the point where the DM is produced. If we consider g∗S to be

constant we can simplify this relation to

ρdm(T ) = ρdm,0

(
T

T0

)3

. (2.21)

It is relevant to mention that, since we have considered just a simple scalar field, this mechanism is valid

for any scalar field that acquires a mass, for example by an explicit symmetry breaking.

At last, going back to DM production, another important mechanism to mention corresponds to the

production of vector bosonic DM candidates, in [34, 35] they study vector DM production due to quantum

fluctuations during inflation as Cosmic Strings and claim that this mechanism can account for all the

DM density in the universe for some parameter space, in the form of a coherent oscillating condensate.

In the next chapter, we are going to present the possibility of considering a non-standard cosmological

(NSC) scenario, its fundamental concepts, and its effects on the DM abundance.
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Chapter 3

Non-Standard Cosmology

As mentioned before, ΛCDM assumes that prior to BBN, the universe transitioned from the inflationary

epoch to an era dominated by radiation. Despite the great achievements of ΛCDM, there is scant evidence

that supports this statement. This motivates us to study the dynamical evolution of DM through a period

of non-standard cosmological (NSC) expansion, prior to BBN. The fact that to this day, the primordial

abundances of helium and deuterium are measured with a 1% precision, makes BBN a powerful barrier,

where the universe must transition into a radiation-dominated period. Despite this, we have motives to

consider physics beyond SM, such as the unknown nature of inflation, dark energy, neutrino masses, and

the DM, moreover, as the observations have become more precise, there have appeared some interesting

points of current interest such as the Hubble tension [36], the tension on the power spectrum of density

perturbations σs [37], among others. Those unsolved problems challenge the theory and motivate us to

look at other possibilities.

It is possible to consider the existence of one or more additional fields that eventually could have happened

to dominate the expansion of the universe. Some well-studied cases are Early Matter Domination (EMD)

[38, 39] and Kination, i.e., kinetic energy domination [40, 41]. In this thesis, we will consider the existence

of a field that potentially dominates the energy density of the universe in various scenarios. It is important

to summarize a few important parameters.

3.1 NSC parameters

We will call the extra field ϕ and its equation of state is given by

pϕ = ωϕρϕ. (3.1)

As we mentioned before, is important to match the theory with BBN, i.e., we require the field not to

dominate the expansion of the universe after TBBN ∼ 1MeV ∼ Tend, since ΛCDM indicates a radiation

dominated universe up to that point. The Boltzmann equations that govern the energy density of the

field and the SM entropy density s are [42]

dρϕ
dt

+ 3(1 + ωϕ)Hρϕ = −Γϕρϕ, (3.2)

ds

dt
+ 3Hs =

Γϕ

T
ρϕ. (3.3)
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3.1. NSC parameters Chapter 3. Non-Standard Cosmology

where ρϕ is the energy density of the ϕ field, Γϕ is the decay rate of the ϕ field and s is the SM entropy

density.

It is also important to recall that the Hubble parameter is given by

H =

√
ρϕ + ρR + ρa

3M2
P

, (3.4)

where ρϕ, ρR and ρa are the energy densities of ϕ, radiation and the axion field, respectively. Here we can

neglect the axion contribution since it is always subdominant. It is useful to identify the temperature

Tend where the field ϕ no longer dominates the energy density, which is related to the decay rate of the

field and a temperature Teq > Tend in which the energy density of radiation and the field ϕ are equal,

i.e., the moment at which ϕ starts to dominate the energy density after a radiation dominated period.

This feature gives us the relation between the energy density and the scale factor as

ρR(R) = ρeq

(
Req

R

)4

, ρϕ(R) = ρeq

(
Req

R

)β

, (3.5)

where β ≡ 3(1 + ωϕ) and Req = R(Teq). We have 2 possible scenarios; the first one is for β < 4, where

the field ϕ is required to mostly decay up until Tend and the second, where β > 4, which means that the

field does not require to decay since it dilutes itself as the universe expands [43] and we can consider the

universe to be ϕ-dominated up until Tend.

Now, to determine Tend we have, for β > 4, that ρϕ(Tend) = ρR(Tend), and for a decaying field, this

temperature corresponds to the point at which the field has mostly decayed, i.e., H(Tend) = Γϕ. Using

Eqs. (1.15) and (1.23) this leads us to

T 4
end ≡ 90

π2g∗(Tend)
M2

PΓ
2
ϕ. (3.6)

We need also to consider the point where the approximation Γϕ ≪ H(T ) is no longer valid due to the

ϕ decay, we define then Rc which is the point where the decay of the field has an important impact in

the evolution of the temperature. This requires solving Eqs. (3.2) and (3.3) considering H(T ) ≈
√

ρϕ

3M2
p
,

which, following the results found in [10, 43], at first order in Γϕ/Heq gives us

ρϕ(R) ≂ ρeq

[(
Req

R

)β

− 2

β

Γϕ

Heq

(
Req

R

)β/2
]
, (3.7)

ρR(R) ≂ ρeq

[(
Req

R

)4

+
2

8− β

Γϕ

Heq

(
Req

R

)β/2
]
, (3.8)

as mentioned before, around Heq the first term on the RHS of Eqs. (3.7) and (3.8) are the dominant

ones. Considering that at Rc both terms in the RHS of Eq. (3.8) should be of the same order we obtain

the relation

Rc ≃ Req

(
(8− β)

2

(
Teq

Tend

)2
) 2

8−β

. (3.9)

Also looking at Eq. (3.7), since the decay of ϕ should stop by the point in which both terms on the RHS

become comparable, we obtain

Rend ≃ Req

(
β

2

(
Teq

Tend

)2
)2/β

. (3.10)
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then, we find the temperature Tc to be of the form

Tc ≃ Teq

(
2

8− β

(
Tend

Teq

)2
) 2

8−β

. (3.11)

Finally from this analysis, we can extract that deep during the ϕ domination, the relation between

temperature and scale factor is

T (R) ≃ Teq

[
2

8− β

(
Tend

Teq

)2
] 1

4 (
Req

R

) β
8

. (3.12)

3.2 NSC effects on the expansion of the universe

As mentioned in the previous section, for a decaying field we have four different periods to consider in

NSC, which, relating the Hubble parameter with the temperature, Eq. (1.35), yields

H(T ) ≃



HR(T ) for Teq ≪ T,

HR(Teq)
(

T
Teq

) β
2

for Tc ≪ T ≪ Teq,

HR(Tend)
(

T
Tend

)4
for Tend ≪ T ≪ Tc,

HR(T ) for T ≪ Tend.

(3.13)

β=1

β=2

β=3

Tend
Teq

107 109 1011 1013 1015 1017
0.1

10

1000

105

107

109

T [eV]

H
(T
)/
H
R
(T
)

Figure 3.1: The evolution of the Hubble parameter normalized by the Radiation Hubble pa-
rameter (HR) for different values of β, considering Teq = 108 GeV and Tend = 4 MeV.

It is important to notice that since the temperature increases from left to right on the graphs, the

cosmological history occurs from right to left since the temperature of the universe decreases in time.

Also it es clear from Fig.(3.1) that fixing Teq and Tend and varying β we also change Tc.

Whilst for a β > 4 we only have two important periods for NSC, and the relation between the Hubble

parameter and the temperature is given by

H(T ) ≃

HR(Tend)
(

T
Tend

) β
2

for Tend ≪ T,

HR(T ) for T ≪ Tend.
(3.14)
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This indicates that the universe is ϕ-dominated before T = Tend, where starts the radiation-dominated

period, this is shown in Fig. (3.2) for different values for β and Tend = 4MeV.

β=4

β=6

β=8

Tend

106 107 108 109 1010

1

100

104

106

T [eV]

H
(T
)/
H
R
(T
)

Figure 3.2: The evolution of the Hubble parameter normalized by the Radiation Hubble pa-
rameter (HR) for different values of β, considering Tend = 0.4 GeV.

It is clear that for each value of β, we will obtain a different cosmological scenario. In the next chapter,

we will analyze the effects of the variation of the expansion of the universe on the production of particles

in systems affected by parametric resonance.

3.2.1 NSC effects on the DM energy density

The above relation between the scale factor and the temperature during the decay period (Eq. (3.12))

generates a different scheme for the DM energy density as a function of the temperature. We can

understand it as follows, considering (2.19) and expressing explicitly the cosmological periods, we obtain

ρdm(R) = ρdm,0

(
R0

R

)3

= ρdm,0

(
R0

Rd

)3(
Rd

Rend

)3(
Rend

Rc

)3(
Rc

R

)3

, (3.15)

where Rd corresponds to the scale factor at the time when the universe changes from radiation-dominated

to matter-dominated, and we recall that Rend corresponds to the time where the ϕ field no longer

dominates the energy density of the universe, and Rc corresponds to the time where starts the injection

of entropy period. It is clear that for a SC regime, we have

ρdm(R) = ρdm,0

(
R0

Rd

)3(
Rd

R

)3

. (3.16)

Thus, if we evaluate the DM energy density in NSC at some moment prior to the start of the decay of

the field, Rp < Rc, using Eq. (2.16) we get

ρdm(Rp) = ρdm,0

g∗S(Tp)T
3
p

g∗S(T0)T 3
0

Send

Sc
. (3.17)

where we have used S0 = Sd = Send and Sc = Sp. Therefore, the DM density evaluated at some moment

before the decay of ϕ has a higher abundance than it would have in a standard, radiation-dominated

expansion, due to the field’s entropy injection into the thermal bath Send > Sc, therefore, the DM energy

density in NSC in the period prior to when ϕ have completely decayed is higher than the DM energy

density in SC at the corresponding point. We see from Eq. (3.16) that in fact, that’s the case since the
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entropy S is conserved throughout all epochs, the extra term Send/Sc cancels out and we simply obtain

Eq.(2.20).

It is important to mention that we are assuming that the DM density has been already set at this early

moment described by Rp (and temperature Tp) and therefore is thermally and chemically decoupled from

the primordial bath, thus does not share the entropy injection.

Another useful way to look at the DM density is as a function of the temperature, where we must include

the injection of entropy period. This gives us for β < 4

ρdm(T ) =



ρdm,0

(
T
T0

)3
for T ≪ Td,

ρdm,d

(
T
Td

)3
for Td ≪ T ≪ Tend,

ρdm,end

(
T

Tend

)24/β
for Tend ≪ T ≪ Tc,

ρdm,c

(
T
Tc

)3
for Tc ≪ T ≪ Teq,

ρdm,eq

(
T
Teq

)3
for Teq ≪ T.

(3.18)

where ρdm,d = ρdm,0

(
Td

T0

)3
, ρdm,end = ρdm,0

(
Tend

T0

)3
, ρdm,c = ρdm,0

(
Tend

T0

)3 (
Tc

Tend

)24/β
, and ρdm,eq =

ρdm,0

(
Teq

T0

)3 (
Tc

Tend

)(24−3β)/β

. We see the non-adiabatic period has a different behavior since the relation

R ∝ T−1 is not satisfied. For NSC with β > 4, it is clear that, since there is no injection of entropy to

the system, we simply have

ρdm(T ) ∝ T 3. (3.19)

and this relation is satisfied at all cosmological times.

Summarizing, we are presented with two different scenarios. For β > 4 we have that the field ϕ simply

dilutes itself as the universe expands and it dominates the energy density up until Tend where we return

to ΛCDM. The other case occurs for β < 4 in which we have radiation domination up until Teq where

begins the ϕ-dominated period, at Tc begins the period of ϕ decaying and the entropy injection to the

bath that ends up at Tend, which indicates that we go back to a radiation dominated universe and we

connect with ΛCDM as well, these schemes are presented in Fig (3.1) and Fig. (3.2). In both cases, we

see that the NSC period is completely defined by fixing three parameters, Tend, Teq, and β.
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Chapter 4

NSC effects on DM particle stability

In this section, we will look at the effects of considering a period of NSC before BBN in models where

parametric resonance could have taken place during that non-standard expansion. We will first study

a model where the DM particle is a hidden photon, coupled to an axion and a photon. Then, we will

comment on a model with an ALP as the DM candidate, coupled with two HPs. A very important feature

relies on the background field since in both cases we require its behavior to be that of an oscillatory field

with a well-defined frequency, which is the case of the DM when produced via misalignment mechanism.

Parametric resonance is one of the crucial features present in the models studied, it presents itself as an

effect produced by the interference of an external field, such as a background oscillatory field, which can

allow a decay process. Parametric resonance has been widely studied in several models regarding axions

(see [44, 45, 46, 47, 48]) and here we will look at some of the effects of considering a NSC history, related

to the stability, particle production, and relic density of DM for different expansion rates of the early

universe.

4.1 HP-DM coupled to axions and photons

Let us consider a Lagrangian invariant under the Z2 symmetry and taking operators of at most mass

dimension 5 given by

L = −1

4
FµνF

µν − 1

4
F ′
µνF

′µν +
m′2

γ

2
A′

µA
′µ +

1

2
∂µϕ∂

µϕ−
m2

ϕ

2
ϕ2 +

gϕγγ′

2
ϕFµνF

′µν , (4.1)

where ϕ is the ALP field, gϕγγ′ is the HP-Axion-Photon coupling, F is the electromagnetic field strength

of the SM, and F ′ is the corresponding one in the hidden sector. This model was studied in [20] to find

the parameter space where the HP is found to be a viable DM candidate. Following this line of study,

we will consider the HP field to constitute the DM, as a background field that decays into axions and

photons.

One important feature of the model relies on the decay rate for the spontaneous decay process. If we

consider the HP to be lighter than the axion (mγ′ < mϕ), conservation of energy prevents the decay and

the HP is considered stable. It is important to us when the HP can decay (mγ′ > mϕ), but we require

the HP to be stable, i.e., its average lifetime must be at least as large as the age of the universe. For this
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model, it is given by

τ =
96π

g2ϕγγ′m3
γ′

(
1−

m2
ϕ

m2
γ′

)−3

≈ 2× 1017 s

(
gϕγγ′

10−6 GeV−1

)−2 ( mγ′

1 eV

)−3

. (4.2)

where in the last step, we have assumed mϕ ≪ mγ′ . Then considering the age of the universe, this gives

us
gϕγγ′

1 eV−1 < 1015
( mγ′

1 eV

)−3/2

. (4.3)

This will constitute one of the bounds of the system in later analysis.

The Lagrangian in Eq. (4.1) gives us the EoM, using Lorenz gauge and considering terms such as

∝ ϕA⃗′, ϕA⃗ to be small, for the photon and the ALP field

(∂2
t −∇2)A⃗ = −gϕγγ′∇ϕ× E⃗′

dm, (4.4)

(∂2
t −∇2 +m2

ϕ)ϕ = −gϕγγ′E⃗′
dm · B⃗, (4.5)

where considering that the hidden DM electric field can be written as E⃗′
dm = E′

0 cosmγ′tε̂dm and using

the rotating wave approximation (see Appendix A.1 for more details), focusing on the process γ′ → γ+ϕ

we obtain the equations for the photon and the axion to be

∂tak = Ωkϕ
†
−ke

−iκt, (4.6)

∂tϕ
†
−k = Ωkake

iκt, (4.7)

where Ωk = η sin θ
√

k
ωϕ

, η =
gϕγγ′E′

0

4 , κ = mγ′ − ω − ωϕ and the frequencies are given by ω = k,

ωϕ =
√
k2ϕ +m2

ϕ. θ corresponds to the angle between the background HP polarization and the photon

propagation. Here, since we focus on the decay process γ′ → γ + ϕ in the HP rest reference frame and

considering a massless axion we obtain k ≈ mγ′/2.

We find the solutions for Eqs. (4.6) and (4.7) to be given by

ak(t) = e
−iκt

2

[
ak(0)

(
cos st+

iκ

2s
sinh st

)
+ ϕ†

−k(0)
Ωk

s
sinh st

]
, (4.8)

ϕ†
−k(t) = e

iκt
2

[
ϕ†
−k(0)

(
cos st+

iκ

2s
sinh st

)
+ ak(0)

Ωk

s
sinh st

]
. (4.9)

where we have defined s = 1
2

√
4Ω2

k − κ2. Since the process we are interested in is the decay of one HP

into an axion and a photon, it is useful for us to look at the photon number density produced through

the decay. First, we must look at the occupation number of photons given by

fγ,k(t) =
1

V
⟨i| a†k(t)ak(t) |i⟩ . (4.10)

Integrating over phase space we obtain the photon number density

nγ(t) =

∫
d3k

(2π)3

[
fγ,k(0)

(
cosh2 (st) +

κ2

4s2
sinh2 (st)

)
+ fϕ,−k(0)

Ω2
k

s2
sinh2 (st) +

Ω2
k

s2
sinh2 (st)

]
.

(4.11)

where fγ,k(0) and fϕ,−k are the initial number of photons and axions respectively. Here it is crucial to

note that as long as s remains a positive real number, the number of photons produced due to the decay

of the DM particle is parametrically amplified. This condition is translated as −2Ωk < κ < 2Ωk.
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We can identify the first and second term of Eq.(4.11) as photon production due to stimulated HP decay

triggered by an initial number of photons and axions respectively, while the third term corresponds to

photon production due to spontaneous Bose-enhancement decay.

We assume the process happens such that there are no initial axions in the medium. On the other hand,

we will see that this process is most important in the early universe, where the universe is filled with a

thermal bath of photons, therefore, we will assume the photons are described by a thermal distribution

given by

fγ,k(0) =
1

ek/T − 1
. (4.12)

In this framework, we can integrate Eq. (4.11) for the number density of photons produced by the decay

process, using a saddle point approximation (see Eq. (A.12) and that appendix for details) we find

nγ(t) =
m2

γ′η

16π

e2ηt

2ηt

(
fmγ′/2 +

1

2

)
, (4.13)

Here, fmγ′/2 is the initial occupation number of photons at energy k ≃ mγ′/2. It is important to mention

that, since we are considering mϕ = 0, we can simplify the parameters Ωk ≃ η sin θ and κ = mγ′ − 2k.

As mentioned before, since we are particularly interested in the resonant process, here it is crucial to

look at the resonance window and its relation with the expansion of the universe (for a more detailed

review on parametric resonance see Appendix B). A photon of frequency ω, which satisfies the resonance

condition, is affected by the expansion of the universe and will have its wavenumber red-shifted, moving

out the resonance window. The resonant decay of DM into axions and photons will happen if the DM

condensate is excited by photons within a range δk, around the central value given by k ≃ mγ′/2. We

found in Appendix B that the size of the resonance window is δk = 2η = 2Ωk. Now we can relate the

resonance window for the momentum with the Hubble parameter through

δk =
mγ′Hδt

2
, (4.14)

which considering the resonance window gives us δt = 4Ωk/(mγ′H) and since we are interested in solu-

tions exponentially increasing in time, we focus on the regime where the exponent 2ηδt = g2ϕγγ′ρdm/(mγ′H)

increases in time. Furthermore, using the approximation fmγ′/2 ≃ 2T/mγ′ , relating the DM density to

the background amplitude by E′
0 =

√
2ρdm, and taking the stability condition between the photon energy

density and the DM density, which indicates us that ρdm must be greater than ργ = nγmγ′/2 we are

able to find the bound for the coupling parameter to be

g2ϕγγ′ <
mγ′H

ρdm
ln

 64πρdm√
2Hm5

γ′T

. (4.15)

So far, we have assumed that the decay happens into massless photons, which is not true in the case of

an astrophysical environment, where the photon acquires an effective mass due to plasma effects. Since

the condition of Eq. (4.15) must be fulfilled at every cosmological epoch, we shall only consider hidden

photons with a mass higher than the photon’s mass, mγ′ ≥ mγ . Thus, to obtain the limit we will set

mγ′ = mγ , considering the plasma mass data for the photons obtained in [49]. Evaluating the expression

(4.15), we obtain Figs. (4.1) and (4.2), where the region above the curve corresponds to unstable DM,

i.e., a rapidly decaying DM. We implemented NSC considering Tend = 4 MeV, Teq = 108 GeV, and

β = 3, i.e., an early matter-dominated universe for Fig. (4.1), and β = 6 for Fig. (4.2). We will detail an

approximated scheme to interpret the space parameter for the model and compare the behavior of the

bound for SC and NSC. We also included the stability bound given by Eq. (4.3) as an orange dashed
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line in both cases.

Let us first analyze the bound results for SC. Considering Eq. (4.15) to be mainly governed by the factor

mγ′H/ρdm, using Eqs. (1.35) and (2.21) we obtain that for a radiation-dominated period

g2ϕγγ′ ≃ mγ′T−1, (4.16)

which extends across all periods considered for NSC and will be present in every analysis for the next

sections.

4.1.1 NSC effects in the bound

It is very straightforward to take into account the effects of NSC, since as we mentioned in the previous

chapter, the presence of an additional field dominating the energy density of the universe affects the

Hubble parameter and the DM energy density in the early stages, which are both present in the bound

for the coupling.

Let us first analyze the case β < 4. Since Eq. (4.15) is mainly governed by the expression outside the

logarithm, we can focus on these terms. For example in the sector Tc < T < Teq, looking at the Hubble

parameter, we obtain from Eq. (3.13) that H(T ) ∝ T β/2 whilst the DM energy density, considering Eq.

(3.18) we obtain ρdm(T ) ∝ T 3, ultimately, and using the expression found in [50] for the relation between

the plasma mass with the temperature at early stages given by mγ′ ∝ T , we obtain gϕγγ′ ∝ m
(β−4)/4
γ′ .

This allows us to interpret the curve in Fig. (4.2) for the different periods of NSC. An approximated

scheme that contains a non-adiabatic period is given by

gϕγγ′(mγ′) ∝



m0
γ′ for Teq ≪ T,

m
(β−4)/4
γ′ for Tc ≪ T ≪ Teq,

m
(3β−24)/2β
γ′ for Tend ≪ T ≪ Tc,

m0
γ′ for T ≪ Tend.

(4.17)

We can see then that, for example in early matter domination (β = 3), the curve for the bound is

expected to restrict a wider space of parameters since the dependence on the HP mass drops from an

exponent 0 in the radiation-dominated period to -1/4 in the non-adiabatic period of ϕ-dominated period,

to then behave with exponent -5/2 up until the radiation-dominated epoch at the earlier time where it

goes back to a constant behavior if we neglect the logarithm term in the bound. It is important to

mention that since we are considering the plasma mass data displayed in [49], the results shown are

restricted by the data range for the plasma mass.

Considering this analysis we can see for β < 4 (Fig. 4.2) that in fact, these effects translate as a greater

bound for the coupling constant, i.e., it gives us a wider sector of prohibited values for gϕγγ′ for greater

plasma masses. This tells us that to consider a viable HP-DM with masses over 105 eV in NSC we will

require a smaller coupling constant to avoid the unstable period of the system, although this mass value

interferes with the spontaneous decay requirement to consider a stable and long-lived DM of at least the

age of the universe which is a crucial requirement for the model. We will address this at the end of the

section.

On the other hand, since the Hubble parameter and the DM energy density have different expressions

in NSC with β > 4, we must do the corresponding analysis. Considering Eqs. (3.14), (3.19) and again
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Figure 4.1: Exclusion plot for the coupling constant for NSC with β = 3. To the right of the
orange dashed line, the model is excluded by the perturbative decay rate presented in Eq.(4.3).
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Figure 4.2: Exclusion plot for the coupling constant for NSC with β = 6. To the right of the
orange dashed line, the model is excluded by the perturbative decay rate presented in Eq.(4.3).

the relation of the plasma mass with the temperature, we obtain

gϕγγ′(mγ′) ∝

m
(β−4)/4
γ′ for Tend ≪ T,

m0
γ′ for T ≪ Tend.

(4.18)

This shows that for values of β > 4, the slope of the bound is positive in the NSC period, so it gives us

a wider parameter space for stable HP-DM, which is the opposite of the result obtained for the previous

analysis.

In consistency with this relation, we note that if we implement NSC with β > 4 (Fig. 4.2) we see that

the bound is less restricted, allowing bigger values for the coupling constant for higher values of plasma

mass, in correspondence with the scheme presented in Eq. (4.18) where we see for greater values of β,

the prohibited parameter space gets smaller in the NSC period, although as mentioned before, bigger

masses for the HP could make it susceptible to decay spontaneously, ruining its stability.

We must then consider the bound related to the spontaneous decay rate, which relates the coupling
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constant and the DM particle mass to assure its stability. In Fig. 4.2 we see this bound in both scenarios

for β as the orange dashed line. We see that the NSC period occurs in the sector that provides unstable

particles, then, although the NSC effects are found and consistent with the analysis, they occur in a sector

where the model isn’t capable of solving the DM problem. We will then study where this restriction

related to the plasma mass is not an issue to implement a NSC.

23



4.2. ALP decay to two hidden photons Chapter 4. NSC effects on DM particle stability

4.2 ALP decay to two hidden photons

As we have mentioned, there is a high motivation for the study of an ALP DM candidate coupled to

two photons in a great variety of systems. Here we will consider a similar scenario. Axions and ALPs

are one of the most popular DM candidates, which are very light and weakly coupled and they can in

principle decay. However, if both their couplings and mass are small, they contribute to the decay rate

being extremely small and thus may be of little concern. However, in general, we see that this set a

bound between the mass and the coupling constant. We will see from our analysis that since the mass

is an important parameter to express the bound that we must take into consideration this relation for

the DM stability.

Let us now consider a system that has a coupling of an ALP to two massless HP, whose Lagrangian

density is given by

L =
1

2
(∂µϕ)

2 − 1

2
m2

ϕϕ
2 − 1

4
gϕγ′γ′ϕF ′µν F̃ ′

µν . (4.19)

where gϕγ′γ′ is the coupling constant of the ALP to HPs, F ′µν is the HP field strength and F̃ ′
µν is its

dual. The perturbative decay rate is given by

Γpert =
g2ϕγ′γ′m3

ϕ

64π
. (4.20)

Looking at its stability, we require that for ϕ to be stable that Γpert < H0, where H0 is the present-day

Hubble parameter. This gives us the stability bound to be

gϕγ′γ′

1016 eV−1 < 5×
( mϕ

1 eV

)−3/2

. (4.21)

The perturbative decay rate is in fact really tiny in a great range of masses, but we still need to pay

attention to this decay process. The reason lies in the ALP DM production mechanism since as mentioned

before, the particles produced by misalignment are highly coherent, they are produced in the same state

and therefore their occupation number is enormous. This makes Bose enhancement effects plausible.

Considering the spontaneous decay of the ALPs, it is possible for Bose enhancement decay to occur.

Similar to the previous section, we will take into account the effect of the expansion of the universe on

the modes of the particles produced via decay and then we will analyze the effects on NSC scenarios.

Considering Eq. (4.19), the EoM for the HP in a homogeneous axion background can be written as

(∂2
t −∇2)A⃗′ = −gϕγ′γ′∂tϕ∇⃗ × A⃗′, (4.22)

(∂2
t +m2

ϕ)ϕ = gϕγ′γ′∂tA⃗
′ · ∇⃗ × A⃗′. (4.23)

In this case, we consider the HP as a plane and linearly-polarized electromagnetic wave of frequency

ω, and the background axion field is taken to have the form ϕ(t) = ϕ0 cosmϕt. We could also use the

rotating wave approximation (see Appendix A.2 for more details) and focus on the relevant process of

the system, which corresponds to the decay ϕ → γ′ + γ′. We obtain the equations for the polarizations

of the HPs to be

∂tA
′
k,± = ±1

4
gϕγ′γ′mϕϕ0e

iκtA′†
−k,±, (4.24)

∂tA
′†
−k,± = ±1

4
gϕγ′γ′mϕϕ0e

−iκtA′†
k,±. (4.25)

Here, for simplicity, we will focus on the ”+” polarization (the following analysis is also valid for the ”−”
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polarization), and we see that it is possible to compare these differential equations to Eqs. (4.6) and (4.7),

obtained in the previous section. We can identify Ωk = 1
4gϕγ′γ′mϕϕ0 and {ak, ϕ†

−k} → {A′
k,+, A

′†
−k,+},

moreover, the energy conservation relation gives us κ = mϕ − ωγ′ − ωγ′ . Therefore, Eqs. (4.25) and

(4.24) have the same form as the ones found in the previous model, and thus, their solution is formally

the same, meaning

A′
k,+(t) = e

iκt
2

[
A′

k,+(0)

(
cosh st+

iκ

2s
sinh st

)
+

Ωk

s
A′†

−k,+(0) sinh st

]
, (4.26)

A′†
−k,+(t) = e

−iκt
2

[
A′†

−k,+(0)

(
cosh st− iκ

2s
sinh st

)
+

Ωk

s
A′

k,+(0) sinh st

]
, (4.27)

where s = 1
2

√
4Ωk − κ2 and A′

k,+(0), A
′†
−k,+(0) are the initial conditions of the system. This solution

allows us again to define the number density, this time for the ” + ”-polarized-HPs, using Eqs. (A.28)

and (A.29). We want to consider the effect of parametric decay at every epoch, so we will make the

reasonable assumption that there is no initial population of hidden photons to trigger the enhanced

decay of the dark matter. Instead, we will be looking at the ’spontaneous process’, even though, once it

happens, HPs produced by the spontaneous decay will induce the stimulated decay due to the bosonic

nature of the particles. This allows us to consider an initial state with no initial occupation number of

axions or neither of the HP’s polarization, which left us with a density number composed only for the

Bose-enhancement term of the decay, which corresponds to

n+ =

∫
d3k

(2π)3
Ω2

k

s2
sinh2 st, (4.28)

This gives us, considering the regime st ≫ 1 and the saddle point approximation for the HP number

density to be

n+(t) =
m2

ϕ

128π

√
Ωk

πt
e2tΩk , (4.29)

where we can recall 2δtΩk = g2ϕγ′γ′ρdm/mϕH. Similar to the previous model, we can relate the resonance

band for the system with the expansion of the universe using Eq. (4.14) to obtain the expression for the

bound of the system to be

g2ϕγ′γ′ <
mϕH

ρdm
ln

 128πρdm√
Hm7

ϕ/π

. (4.30)

In the following, we will take into consideration one very important feature of the model. We will work

under the assumption the ALP DM has been produced by the very well-known misalignment mechanism.

Therefore, in order to evaluate the bound, similar to the analysis realized in the previous model, we will

find an expression for the energy density as a function of the temperature.

4.2.1 NSC effects in the bound

Let us first focus on the term outside the logarithm in Eq. (4.30), with a constant value for the ALP

mass and taking into consideration the dependence of the Hubble parameter and the DM energy density.

We see that for NSC with β < 4

H(T )

ρdm(T )
∝



T−1 for Teq ≪ T,

T (β−6)/2 for Tc ≪ T ≪ Teq,

T (4β−24)/β for Tend ≪ T ≪ Tc,

T−1 for T ≪ Tend.

(4.31)
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We can see clearly that the function is strictly decreasing as the temperature increases, this allows us to

simplify the analysis due to the fact that since we are looking at the biggest restriction for the coupling

that satisfies Eq.(4.30), we have to consider the lowest possible value for H/ρdm. This means that for

each mass, we must evaluate the bound in the highest value of temperature. Here we must include the

features of the production mechanism. We considered the misalignment mechanism to be responsible

for the background ALP field, then we need to look at the temperature at which the system starts to

oscillate and the relation between the Hubble parameter and the mass field. From Sec. 2.1.1 we see that

the system starts to oscillate at a temperature Tosc that satisfies

3H(Tosc) ≃ mϕ. (4.32)

then the highest possible value of T is given by Tosc and we can reparametrize the bound as a function

solely of the ALP mass, using the relation between the DM energy density and the Hubble parameter.

A general scheme for the coupling is given by

gϕγ′γ′ ∝



m
1/4
ϕ for Teq ≪ T,

m
(2β−6)/2β
ϕ for Tc ≪ T ≪ Teq,

m
(2β−6)/2β
ϕ for Tend ≪ T ≪ Tc,

m
1/4
ϕ for T ≪ Tend.

(4.33)

Another important point to mention relies on the fact that we can interpret from the previous anal-

ysis that this process of resonant decay is more efficient at earlier times, then the NSC effect may be

particularly relevant.

We can now interpret the results in relation to the parameter space. We see that in the radiation-

dominated era, the bound is proportional to m
1/4
ϕ , and in the ϕ-dominated period, its exponent drops

depending on β, but it is clear that the result always prohibits a wider space of parameters. One

important case to mention corresponds to early matter domination, where we see that the dominant

term on the bound does not depend on the ALP mass and behaves as a constant value. Also, as we

mentioned in the previous model, it is important to take into consideration the stability condition from

the spontaneous decay process given by Eq. (4.21). This relation between the ALP mass and the coupling

constant is illustrated in Figs. 4.3 and 4.4 as the orange dashed line.

Now looking at the cases with β > 4, we obtain the scheme to be

H(T )

ρdm(T )
∝

T (4β−24)/β for Tend ≪ T,

T−1 for T ≪ Tend.
(4.34)

here we can notice that in the opposite of the previous case, for sufficiently large β the function H/ρdm

can decrease as the temperature drops, but this sector is prohibited by the stability condition so we can

still rely on the highest value of temperature to find the greater bound. Now we can implement the

relation between the ALP mass and the Hubble parameter to express the coupling in terms of the ALP

mass. For this model, it is given by

gϕγ′γ′ ∝

m
(2β−6)/2β
ϕ for Tend ≪ T,

m
1/4
ϕ for T ≪ Tend.

(4.35)

where in this case we see that for β > 4 the exponent on the ϕ-dominated period is greater than 1/4,

we expect then that the bound of the model will present a wider area of permitted coupling values for
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greater masses. Once again we must take into consideration the stability condition of the DM candidate

due to spontaneous decay and intersect both restrictions to obtain the allowed parameter space for the

model.
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Figure 4.3: The parameter space for the coupling of an ALP to two HPs in SN and NSC for
β < 4. To the right of the orange dashed line, the model is excluded by the perturbative decay
rate presented in Eq.(4.21).

Let us now compare the result shown in Fig. 4.3 with the analysis previously mentioned. We see that in

the period of NSC for β < 4 that the bound is stronger than the one obtained from SC, giving a wider

sector for prohibited parameters, especially for smaller values of β, we see that the case of EMD, i.e.,

NSC with β = 3 shows a particular behavior since the bound does not depend on the mass of the ALP.

In relation to the stability condition due to spontaneous decay, given by Eq. (4.21) and shown in Figs.

4.3 and 4.4 as the orange dashed line, we see that a certain area of NSC is ruled out, but we are still

presented with a viable parameter space, where NSC effects present a different scenario.
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Figure 4.4: The parameter space for the coupling of an ALP to two HPs in SN and NSC for
β > 4. To the right of the orange dashed line, the model is excluded by the perturbative decay
rate presented in Eq.(4.21).

On the other hand, if we look at Fig. (4.4), NSC gives us a weaker restriction for the coupling constant
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since the unstable sector is smaller for greater values of β, which is consistent with the previous analysis.

Once again looking at the stability condition, we see that a certain area of NSC is ruled out but we are

still presented with a wide parameter space viable for the model and we can consider higher masses to

be stable in a wider range of the coupling constant if we consider NSC.
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4.3 Further models

This type of analysis allows us to consider future applications to other systems studied in the literature.

As we saw in both systems analyzed, we can take into consideration the particle production of systems

with parametric resonance to relate the expansion of the universe with the resonance window. This is

very useful since there are a great variety of physical systems that presents this feature and can show the

effects of considering a NSC period. One model of particular interest corresponds to the model studied

in [51] as a toy model with an interaction Lagrangian of the form

LI = gϕχ2. (4.36)

this is similar to the model of the ALP-2HPs but presents an alternative approach using Floquet theory

to analyze the resonant decay of the ϕ background, instead of using the rotating wave approximation as

we did.

There is also interest in the model in [52] where they look at the stability of millicharged light bosonic

DM with a Lagrangian of the form

L = −1

4
F 2 + (Dµϕ)

†Dµϕ−m2ϕ†ϕ. (4.37)

and its decay into photons.

There are also various models in (p)reheating related to inflation [53, 54, 55] or DM production [56],

among others, which can be interesting objects of study.
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Conclusions

In this thesis, we have studied the effects on the stability of DM candidates due to the implementation of

a NSC period prior to BBN. This means that instead of a simple extrapolation of the radiation-dominated

period that stipulates ΛCDM, we have considered a period in which the universe was dominated for a

new field ϕ. This allowed us to study the effects that NSC produced on the expansion of the universe

as well as the DM energy density and its relic value. We have shown the difference between different

equations of state for the new field and we established the necessary parameters to describe the NSC

period.

We have found two important regimes, first for β < 4 we have that the additional field must decay

before BBN, thus the DM energy density must be higher in early times compared to SC to match the

data at the present day due to the fact that an additional field dominating the universe would dilute

the DM density. On the contrary, for β > 4 we have found that since the universe expands faster, the

DM density must be smaller in NSC. Then we implemented NSC to two different DM models affected

by parametric resonance. The first one consisted of a HP-DM coupled to an axion and a photon, we

solved the equations of motion in the resonance frame and we relate the expansion of the universe with

the resonance window of the system. Then we found the number density of photons produced by the

HP decay and determine the stable parameter space, capable of accounting for the total DM density but

the result showed that the NSC effects would occur for particles with masses that are prohibited by the

stability condition due to spontaneous decay of the candidate.

Then we implemented NSC in a model of an ALP-DM coupled to two massless HPs and again solved

the equations of motion for the resonant decay process to find the stability bound of the system taking

into account the production mechanism to obtain an exclusion plot where we found that NSC for β < 4,

we considered an early matter-dominated universe and obtained that this gives us a stronger bound for

the coupling, prohibiting a wider sector of masses whilst NSC for β > 4 we obtained that the exclusion

plot gives a smaller prohibited area of parameters, allowing a wider combination of coupling and ALP

mass to be able to describe the DM energy density. For this model, the results were compatible with the

stability condition due to spontaneous decay so we defined a viable space of parameters to consider this

model as a DM candidate.

It is important to mention that the models studied have several other restrictions related to observations,

astrophysical tests, and a wide variety of experiments, that were not mentioned in the discussion for the

sake of clarity in the study. Nevertheless, in light of the obtained results in this thesis, it seems useful

to consider the study of the parameter space of models with DM candidates under the supposition of a

period of non-standard expansion prior to BBN in a complete setup. This investigation seems interesting

as a future extension to this work.
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Appendix A

Rotating Wave Approximation

A.1 HP to Axion-Photon system

Taking into account the Eqs. (4.4) and (4.5) and considering the axion field and the photon field given

by

A(x, t) =

∫
d3k

(2π)3
1√
2ω

[
ak(t)e

i(k⃗·x⃗−ωt) + ak(t)
†e−i(k⃗·x⃗−ωt)

]
, (A.1)

ϕ(x, t) =

∫
d3k

(2π)3
1√
2ωϕ

[
ϕk(t)e

i(k⃗·x⃗−ωϕt) + ϕk(t)
†e−i(k⃗·x⃗−ωϕt)

]
, (A.2)

where ωϕ =
√
k2 +m2

ϕ, ω = k. Moreover, we assume that the amplitudes ak(t) and ϕk(t) vary slowly in

time so we can neglect the second derivative term in the EoM, and they satisfy the commutation relations

given by [ϕk(t), ϕ
†
k′(t)] = [ak(t), a

†
k′(t)] = (2π)3δ3(k − k′). Using the rotation wave approximation we

obtain the coupled system given by

∂tak = ηsinθ

√
k

ωϕ

(
ϕke

−i∆1t + ϕke
−i∆2t + ϕ†

−ke
−iκt

)
, (A.3)

∂tϕk = −ηsinθ

√
k

ωϕ

(
ake

i∆1t + ake
i∆2t − a†−ke

−iκt
)
, (A.4)

where we defined ∆1 = mγ′ + ω − ωϕ,∆2 = mγ′ − ω + ωϕ and κ = mϕ − ω − ωϕ. It is important to

mention that θ corresponds to the angle between the photon propagation and that of the HP background

polarization. This gives us, if we consider only the process mγ′ → ω+ ωϕ, the following set of equations

∂tak = Ωkϕ
†
−ke

−iκt, (A.5)

∂tϕ
†
−k = Ωkake

iκt. (A.6)

Here we have defined Ωk = η sin θ
√

k
ωϕ

and we can see that κ represent the energy conservation relation

of the resonant process. The solutions for Eqs. (A.5) and (A.6) are given by
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ak(t) = e−iκt/2

[
ak(0)

(
cosh (st) + i

κ

2s
sinh (st)

)
+ ϕ†

−k(0)
Ωk

s
sinh (st)

]
, (A.7)

ϕ†
−k(t) = eiκt/2

[
ϕ†
−k(0)

(
cosh (st)− i

κ

2s
sinh (st)

)
+ ak(0)

Ωk

s
sinh (st)

]
. (A.8)

Here s = 1
2

√
4Ω2

k − κ2. This solution allows us to define the occupation number for ϕ-particles and

a-particles.

fϕ,k(t) =
1

V
⟨i|ϕ†

k(t)ϕk(t) |i⟩ , (A.9)

fγ,k(t) =
1

V
⟨i| a†k(t)ak(t) |i⟩ . (A.10)

which, after replacing Eq. (A.7) for the photon occupation number gives us

fγ,k(t) = fγ,k(0)

(
cosh2 (st) +

κ2

4s2
sinh2 (st)

)
+ fϕ,−k(0)

Ω2
k

s2
sinh2 (st) +

Ω2
k

s2
sinh2 (st). (A.11)

where fγ,k(0) and fϕ,−k(0) are the initial occupation number of photons and axions respectively. Finally,

we obtain the photon number density

nγ(t) =

∫
d3k

(2π)3
fγ,k. (A.12)

A.2 ALP to two HPs system

Considering the field (for simplicity, we will drop the ”’” notation to identify the HP in this analysis) to

be linearly polarized, we can express it in the following form

A⃗(x⃗, t) =

∫
d3k

(2π)3
1√
2ωk

∑
λ=+,−

(
ak,λ(t)ε̂k,λe

−i(ωkt−k⃗·x⃗) + a†k,λ(t)ε̂
∗
k,λe

i(ωkt−k⃗·x⃗)
)
, (A.13)

where ˆεk,λ=± and [ak,λ(t), a
†
k′,λ(t)] = (2π)3δ3(k − k′). Additionally, the basis satisfies the convention

k⃗ × ε̂k,λ = −iλkε̂k,λ. (A.14)

Also, since the ALP background consists of an oscillatory field, we can express it as

ϕ(t) =
ϕ0

2

[
eimϕt + e−imϕt

]
. (A.15)

Replacing these relations into Eqs. (4.22) and (4.23) we obtain

(
−2iωkȧk,λε̂k,λe

−i(ωkt−k⃗·x⃗) + 2iωkȧ
†
k,λε̂

∗
k,λe

i(ωkt−k⃗·x⃗)
)

=
gϕγ′γ′ϕ0mϕ

2
(eimϕt − e−imϕt)

(
ak,λ(k⃗ × ε̂k,λ)e

−i(ωkt−k⃗·x⃗) + a†k,λ(k⃗ × ε̂∗k,λ)e
i(ωkt−k⃗·x⃗)

)
. (A.16)
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where we have neglected the second derivative terms on the amplitudes since we consider them to vary

much more slowly than e±iωkt, also, it is important to mention that we have a sum over λ = ±. Let us

first consider the equation for ak,+ which is given by

∂tak,λ =
gϕγ′γ′ϕ0mϕ

4

[
ak,λe

imϕt − ak,λe
−imϕt + a†−k,λe

−iκt
]
. (A.17)

Once again, as we are interested in the process ϕ → γ′ + γ′ we focus on the last term, obtaining the

equation

∂tak,+ = Ωe−iκta†−k,+. (A.18)

where we have defined Ω = gϕγ′γ′mϕϕ0/4. For completeness, we see that the rest of the equations of the

system are given by

∂ta
†
−k,+ = Ωeiκtak,+, (A.19)

∂tak,− = −Ωe−iκta†−k,−, (A.20)

∂ta
†
−k,− = −Ωeiκtak,−. (A.21)

The solutions for these differential equations are

ak,+(t) = e−
iκt
2

[
ak,+(0)(cosh st+

iκ

2s
sinh st) +

Ω

s
a†−k,+(0) sinh st

]
, (A.22)

a†−k,+(t) = e
iκt
2

[
a†−k,+(0)(cosh st−

iκ

2s
sinh st) +

Ω

s
ak,+(0) sinh st

]
, (A.23)

ak,−(t) = e−
iκt
2

[
ak,−(0)(cosh st+

iκ

2s
sinh st)− Ω

s
a†−k,−(0) sinh st

]
, (A.24)

a†−k,−(t) = e
iκt
2

[
a†−k,−(0)(cosh st−

iκ

2s
sinh st)− Ω

s
ak,−(0) sinh st

]
, (A.25)

where s = 1
2

√
4Ω2 − κ2. We can then define the number operator N+ = a†k,+ak,+ and we can obtain the

initial occupation number density from

f+γ,k(t) =
1

V
⟨i|N+ |i⟩ , (A.26)

f−γ,k(t) =
1

V
⟨i|N− |i⟩ , (A.27)

which after replacing the solutions for ak,+ and a†k,+ gives us for the ”+” polarization

f+γ′,k(t) = f+γ′,k(0)

(
cosh2 (st) +

κ2

4s2
sinh2 (st)

)
+ f+γ′,−k(0)

Ω2
k

s2
sinh2 (st) +

Ω2
k

s2
sinh2 (st). (A.28)

Then the number density of HP produced by the decay process is found to be
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n+γ′ =

∫
d3k

(2π)3
f+γ′,k, (A.29)

which considering no initial HP of either polarization, gives us the number density of the simple form

n+γ′ =

∫
d3k

(2π)3
Ω2

s2
sinh2 st. (A.30)
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Appendix B

Parametric Resonance

Parametric resonance is a phenomenon that can be observed in a driven harmonic oscillatory move-

ment. It consists in a simple harmonic oscillator that is under a small external effect of a periodic force

proportional to the position. We can look at it in the simple form

ẍ+ ω2
0x = −xf(t) (B.1)

where we consider f(t) to be the external force responsible for the driven motion. As a first approxima-

tion, for f(t) = 0 we simply have a harmonic oscillator, whose solution is well-known to be

x0(t) = A cosω0t+B sinω0t. (B.2)

As we mentioned before, we require the perturbations of the simple harmonic oscillator to be periodic

and small, so we can consider them to be of the form

f(t) = ω2
0h cos (ωt) (B.3)

where h ≪ 1 and the term ω2
0 is put for convenience. Eq. (B.1) is then

ẍ+ ω2
0x = −ω2

0h cos (ωt)x (B.4)

which is called Mathieu’s equation. Considering the solution for Eq. (B.4) to be a variation of Eq. (B.2),

we can replace it to obtain in the R.H.S., using trigonometric identities, the following terms

cos (ωt) cos (ω0t) =
1

2
[cos ((ω + ω0)t) + cos ((ω − ω0)t)] , (B.5)

cos (ωt) sin (ω0t) =
1

2
[sin ((ω + ω0)t)− sin ((ω − ω0)t)]. (B.6)

Here we see that if ω = 2ω0 the last term in both equations gives a resonant term, i.e., a term with the

same frequency as the unperturbed solution, giving us the point of maximal resonance effect. Parametric

resonance also allows us to consider a resonance interval, which consists in a window around a maximal

resonance point, where we still observe the solution to have increasing amplitudes. To find this interval
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of resonance, let us define ρ = ω0 + ϵ/2, where ϵ ≪ 1 is a small deviation from the natural frequency of

the system, this allows us now to consider the ansatz for the general solution to be

x(t) = A(t) cos (ρt) +B(t) sin (ρt), (B.7)

where the amplitudes vary slowly in time. Replacing this ansatz in Eq.(B.4) and neglecting the second-

order terms of ϵ as well as the second derivative term of the amplitudes, we obtain the resonant terms

to be

[
2Ȧ+

(
ϵ+

1

2
ω0h

)
B

]
sin (ρt) +

[
2Ḃ +

(
−ϵ+

1

2
ω0h

)
A

]
cos (ρt) = 0, (B.8)

which, if we consider the amplitudes to be slowly varying in time, they can be expressed as {A,B} =

{A0, B0}est, then it gives us a system of equations for the amplitudes {A(t), B(t)} of the form

2sA0 +
(
ϵ+ 1

2hω0

)
B0 = 0,

2sB0 +
(
−ϵ+ 1

2hω0

)
A0 = 0.

(B.9)

Considering non-trivial solutions, this gives us a clear condition between the parameters of the system if

we want the solutions that increase exponentially in time, this is

s = ±1

2

√(
hω0

2

)2

− ϵ2 −→ −hω0

2
< ϵ <

hω0

2
. (B.10)

Generally, µ = 2s is called the Floquet exponent, and it is used in several studies regarding Floquet

theory. The general solution with an increasing amplitude due to parametric resonance effects is then

given by

x(t) = e
t
2

√
(hω0

2 )
2−ϵ2(a0 cos ((ω0 + ϵ/2)t) + b0 sin ((ω0 + ϵ/2)t)). (B.11)

where we have only considered the positive exponent for the solution since we are interested in the

solutions with increasing amplitudes.

We need now to implement these features in the models studied. The most important result of this

analysis is the interval of resonance. Taking into consideration the system of an ALP decaying to two

HPs, the energy conservation coincides with the requirement ω0 = ω/2, which in the system is given by

mϕ = 2ω, where mϕ is the ALP mass (background frequency) and ω in the HP frequency (unperturbed

system). Looking at the Floquet exponent, we express the solution as hyperbolic functions, but the

factor s remains the same for both this general analysis and for the physical model studied, we see then

that its form, given by s = 1
2

√
4Ω2

k − κ2 can be related to the expression found, s = 1
2

√
(hω0

2 )2 − ϵ2 so

we can identify the relation (hω0

2 ) → 2Ωk and ϵ → κ. Finally, the resonance window is found to be, in

terms of the parameters of the system, given by

−2Ωk < κ < 2Ωk, (B.12)

this allows us to identify the resonance window for the system since ϵ → κ and ϵ is related to the resonance

window, we obtain in the system that the maximum value of momentum dispersion corresponds to 2Ωk,

36



Chapter B. Parametric Resonance

and we can then say the condition for resonance in this analysis, coincides with the condition for s2 > 0.

This then allows us to relate the resonance window with the dispersion of the momentum caused by

the expansion of the universe, which is a very useful tool to rapidly identify the space parameter that

indicates resonance and the time while it is present in each system.
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