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Abstract

The relevance of hidden symmetries is explored at the level of classical and quantum mechanics in a

variety of physical systems related to conformal and superconformal invariance. Hidden symmetries,

that correspond to nonlinear in momenta integrals of motion, generally lead to nonlinear algebras.

First, analyzing the sl(2,R) symmetry, it is concluded that both the asymptotically free (at

in�nity) and the harmonically con�ned models are two di�erent forms of dynamics described by

the same symmetry algebra. A mapping between these two dynamics is constructed, and its

applications are studied in one-, two- and three-dimensional systems.

Second, rational extensions of the conformal mechanics model of de Alfaro, Fubini and Furlan

(AFF) are derived by employing the generalized Darboux transformation. In general, the obtained

systems have an almost equidistant spectrum with some gaps inside, and their spectral properties

imply the presence of hidden symmetries. The supersymmetric extensions of the AFF model are

also studied, and the origin of the hidden bosonized superconformal symmetry of the quantum

harmonic oscillator is established.

Finally, a three-dimensional generalization of the AFF system is considered. The model de-

scribes a particle with electric charge e in Dirac monopole background of magnetic charge g, and

subjected to the central potential mω2

2 r2 + α
2mr2 . When α = (eg)2, the classical trajectories are

periodic for arbitrary initial conditions and at the quantum level, the spectrum acquires a peculiar

degeneration. These characteristics are described by hidden symmetries, which can be obtained

from the model without harmonic term by means of the mentioned mapping. A complementary

spin-orbit coupling term gives rise to a supersymmetric extension of the system, characterized by

superconformal symmetry. The spectrum-generating operators of the new model are shown to be

nonlocal.

Keywords: Hidden symmetries; (Super-)Conformal symmetry; de Alfaro, Fubini and Furlan

model; Harmonic oscillator; Supersymmetric quantum mechanics; Rationally extended systems;

Darboux duality; Klein four-group; Dirac monopole.
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Notations

Here we summarize some common notations used in the manuscript. In this Thesis we use ~ = c = 1.

Geometry :

gµν and ηµν : The general metric tensor and Minkowski metric tensor.

xµ = gµνx
ν =

∑
ν gµνx

ν and gµνxµxν =
∑
µ,ν gµνx

µxν : The Einstein summation convention.

ζµ: A Killing vector component.

A ∧B and d: The exterior product and the exterior derivative, respectively.

£XT : The Lie derivative of a tensor �eld T along the �ow of the vector �eld X.

iXω ≡ ω(X, . . . . . . . . .︸ ︷︷ ︸
r−1 entries

): The contraction between a vector �eld and a di�erential r-form ω,

which, in turns, is a di�erential (r − 1)-form.

Classical mechanics:

M: The con�guration space.

TMq: The tangent space at q ∈M.

T∗Mq: The cotangent space at q ∈M.

TM: The tangent bundle.

T∗M: The cotangent bundle.

qi and q̇i = dqi

dt : The generalized coordinates onM and its velocities.

L , pi = ∂L
∂q̇i and H: The Lagrangian, the canonical momenta and the Hamiltonian.

ω = dqi ∧ dpi: The symplectic two-form.

Supersymmetric quantum mechanics:

H: The quantum Hamiltonian.

L: A dimensionless quantum Hamiltonian.

ψ∗, ψ̃∗: Two linearly independent eigenstates of L, with eigenvalue λ∗ .

W (. . . . . . . . .︸ ︷︷ ︸
n entries

): The generalized Wronskian of n functions.

L̆: A dimensionless supersymmetric partner of L.
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A±: The �rst order mutually conjugate intertwining operators.

A±n : The higher order mutually conjugate intertwining operator.

Ω∗(x) , Ω̆∗(x): The Jordan states constructed by means of ψ∗ and ψ̃∗ , respectively.

H : A matrix-valued super-Hamiltonian operator.

Qa : A Supercharge.

N : The number of supercharges.

Pauli matrices: σ1 =

 0 1

1 0

 , σ2 =

 0 −i

i 0

 , σ3 =

 1 0

0 −1

 .

Π± = 1
2 (1± σ3): Projectors to σ3 subspaces.

Conformal mechanics:

H, D, and K: Generators of the so(2, 1) algebra.

J and J±: Generators of the sl(2,R) algebra.

Hν : The Hamiltonian of an asymptotically free conformal invariant system.

Hν and C±ν The Hamiltonian of de Alfaro, Fubini and Furlan model and its ladder operators.

S: The conformal bridge transformation operator.

Rationally extended systems:

∆±: The positive-negative Darboux scheme.

A±(±): The self-conjugate intertwining operators of the positive-negative Darboux scheme.

L(±): The rationally extended system associated with the positive-negative Darboux scheme.

A± , B± , and C± : The spectrum-generating ladder operators of the ABC-type.

A±i , B
±
i , and C±i : The extended families of ladder operators of the ABC-type.

S±z , : The extended families of intertwining operators.

U (2θ(z)−1)
0,z , and I(1−2θ(z−N))

N,z : The extended subsets of generators of a nonlinear superalgebra.

Three-dimensional conformal mechanics in a monopole background :

ν = (eg)2: Here e and g are the particle's electric charge and the monopole's magnetic charges,

respectively.

α : The coupling of the conformal mechanics potential.

I1, I2, a and a†: Dynamical integrals for the case α = ν2.

J : The Poincaré vector integral.

T (ij), T [ij]: Symmetric and anti-symmetric tensor integrals.

A charge-monopole superconformal model

K = J + 1
2 σ: The total angular momentum.

k = j ± 1/2: The eigenvalue of K 2.
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±ωσ · J : The spin-orbit coupling.

Θ, Θ†, Ξ and Ξ†: Scalar intertwining operators.

H and H̆ : Pauli type supersymmetric Hamiltonians in exact and spontaneously broken phase.

Q, Q†, W, W†: Nilpotent fermionic operators.

R, G and G†: The R−symmetry generators and the lowering and rising supersymmetric ladder

operators.

P±: Projectors onto subspaces with �xed k.

B and F : Generic bosonic and fermionic three-dimensional generators.

B and F : Generic bosonic and fermionic one-dimensional generators.
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Introduction

Symmetries play a very important role in the construction of the fundamental theories that we have

in physics nowadays. Examples of that are the general relativity and the Standard Model of particle

physics, just to name a few. In this Thesis, we study hidden symmetries that control nontrivial

aspects of classical dynamics, as well as spectral peculiarities in quantum and supersymmetric

quantum mechanics models.

From a classical mechanics perspective, Noether's theorem reveals that behind the invariance of

action under a symmetry transformation, there exists a conservation law. In general, the principle of

least action assumes the existence of a Lagrangian L, which in mechanics depends on the generalized

coordinates and its velocities. Geometrically, these coordinates belong to a con�guration spaceM,

which points are usually denoted by q, and their associated velocities are vectors that live on the

tangent space TMq at q , which in turns, are generated by the action of a particular tangent vector

�eld. Then, naturally the Lagrangian is a function on the tangent bundle TM = ∪q∈MTMq

of M [Nakahara (2003); Sundermeyer (2014)]. In this framework, symmetry is a one-parametric

transformation generated by some conserved vector �eld. To compare transformations associated

with two di�erent vector �elds, say X = Xµ ∂
∂qµ and Y = Y µ ∂

∂qµ , we compute the Lie derivative1 of

Y along the �ow of X, denoted by £XY , and it is not di�cult to show that this operation reduces

to the usual commutator between two vector �elds [X,Y ] ∈ TM. This gives rise to a Lie algebra

of vector �elds on TM [Nakahara (2003)].

On the other hand, when we go to the Hamiltonian formalism, the dynamical variables consid-

ered now are the generalized coordinates and their canonical momenta pi = ∂L
∂q̇i

. One can show that

under a general change of coordinates, pi transform as the components of a vector in the cotangent

space T∗Mq at q [Nakahara (2003)]. Then the phase space is naturally identi�ed with the cotangent

bundle T∗M = ∪q∈MT∗Mq with local coordinates (qi, pi) on it [Arnold et al. (1989); Nakahara

(2003); Sundermeyer (2014)]. Here, the symplectic form ω = dqi ∧ dpi encodes the Poisson bracket

structure. Namely, with a given function F = F (q, p) on the phase space, a Hamiltonian vector

1The Lie derivative evaluates the change of a tensor �eld (including scalar functions, vector �elds and one-forms),
along the �ow de�ned by another vector �eld [Nakahara (2003)].
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�eld,

XF =
∂F

∂pi
∂

∂qi
− ∂F

∂qi
∂

∂pi
,

is associated, such that the contraction iXF ω ≡ ω(XF , .) = dF . For two Hamiltonian vector �elds

XF and XG, it follows then that £XFXG = X{F,G} and £XFG = {G,F}. If F is identi�ed as

the Hamiltonian of the system, then the last relation corresponds to the equation of motion for G

[Arnold et al. (1989); Sundermeyer (2014)]. In this formalism, a symmetry transformation is a �ow

produced by a Hamiltonian vector �eld whose generating function in phase space is conserved in

time.

As it is known, the Lie algebra mentioned above corresponds to a more abstract concept. A Lie

group is a smooth manifold with an additional group structure, and any Lie group gives rise to a

Lie algebra, which is its tangent space at the identity [Nakahara (2003); Gilmore (2006)]. When

a group �acts� on some target space (that could be the same group manifold), an explicit form

of its elements is required. This leads us to the representation theory. In Hamiltonian classical

mechanics, the target space is T∗M, the Lie algebra generators are identi�ed with the Hamiltonian

vector �elds, and the group action corresponds to Hamiltonian �ows. In the case of quantum theory,

we look, in accordance with the celebrated Wigner theorem [Wigner (1931, 2012); Weinberg (1995)],

for irreducible unitary representations of the quantum symmetry group of the system, and target

space is the Hilbert space generated by eigenstates of the quantum Hamiltonian operator. In fact,

the �algebraic� approach claims that the entire Hilbert space can be generated by the action of the

symmetry operators on an arbitrary solution of the corresponding Schrödinger equation, i.e., the

spectrum of the system is explained by symmetry.

Symmetries are intrinsic properties of the geometry that characterizes a given manifold. Suppose

we have a space-time manifold with a metric structure ds2 = gµνdx
µdxν . If ds2 is invariant under a

certain change of coordinates, we have an �isometry�, which in accordance with the discussion above,

is generated by a particular vector �eld, called Killing vector �eld [Nakahara (2003)]. We can ask for

mechanical systems that respect the isometries of the space-time where they live, that gives rise to

important physical consequences. For example, the construction of an action principle in Minkowski

space that is invariant under the Poincaré group transformations xµ → yµ = Λµνx
ν + aµ, where

Λµν are the Lorentz transformations, is just the same as to impose the relativity postulates. In this

way, Poincaré invariant quantum �eld theories involve in their description �eld operators which

provide certain representations of this symmetry group [Weinberg (2012); Sundermeyer (2014)].

The isometry condition for in�nitesimal transformations xµ → xµ + ζµ corresponds to the Killing

equation
∂gµν
∂xλ

ζλ + gµλ
∂ζλ

∂xν
+ gλν

∂ζλ

∂xµ
= 0 ,

and for Poincaré transformations in Minkowski space its solutions are given by ζµ = aµ + ωµνxν ,

2



where ωµν is an antisymmetric matrix. To obtain the corresponding Killing vector �elds we use

the fact that Poincaré transformations admit the unitary representation exp
(
i(aµTµ − 1

2ω
µνMµν)

)
,

where Tµ and Mµν are our candidates for translations and Lorentz transformations generators,

respectively. To identify them we should compare yµ = xµ + ζµ with

exp

(
i(aνTν −

1

2
ωαβMαβ)

)
xµ ≈ xµ + i(aνTν −

1

2
ωαβMαβ)xµ ,

which implies that Tµ = i∂µ and Mµν = i(xµ∂ν −xν∂µ) + Σµν . Here Σµν are operators that do not

act on the coordinates, but their representations tell us about the spin of the corresponding �elds.

The notion of Killing vectors is generalized to the so-called conformal Killing vectors, which

are related to the coordinate changes so that ds2 → Ω(x)ds2, where Ω(x) is the conformal factor.

Such transformations correspond, particularly, to dilatations xµ → cxµ and special conformal

transformations xµ → (xµ − bµx2)/(1− 2bνxν + b2x2) [Francesco et al. (1997)].

Conformal symmetry, as well as conformal �eld theories, have made an huge contribution on

di�erent aspects of physics, such as condensed matter, electrodynamics, and gravity, just to mention

a few examples [Ginsparg (1988); Jackiw and Pi (2011)]. The two-dimensional case is special in

this context. Indeed, consider the change of coordinates

x1 → x1 + f1(x1, x2) , x2 → x2 + f2(x1, x2) ,

in �at space. This transformation can be shown to be of the conformal type if and only if f1(x1, x2)

and f2(x1, x2) satisfy the Cauchy-Riemann equations, i.e., they are the real and imaginary parts

of a holomorphic function. In the case of in�nitesimal transformations, however, we can be less

restrictive. To see this better, it is natural to take the complex coordinate z = x1 + ix2, together

with its complex conjugate z̄, and consider the in�nitesimal transformation z → z + ε(z), where

ε(z) is assumed to be a meromorphic function which admits a Laurent expansion around z = 0. In

this situation a (primary) �eld φ(z, z̄) in�nitesimally transforms as δφ = −(ε∂z+ ε̄∂z̄)φ, from where

we identify the symmetry generators ln = −zn+1∂z and l̄n = −z̄n+1∂z̄, with n ∈ Z. They produce a

direct sum of two copies of the in�nite-dimensional Witt algebra, while the global conformal group

that maps the complex plane onto itself is obtained from the subalgebra sl(2,C) = sl(2,R)⊕sl(2,R),

which, in turn, is generated by {l0, l̄0, l±, l̄±}, [Francesco et al. (1997)]. Using these properties one

can introduce a conformal �eld theory that does not even need a speci�c action principle. This

corresponds to the so-called conformal bootstrap [Polyakov (1974)]. This type of theories, �minimal

models�, as they are often called [Belavin et al. (1984); Francesco et al. (1997)], appears in the study

of critical points in the second-order phase transition phenomena, and their main advantage is the

calculation of the correlation functions of 2 and 3 points, only by symmetry arguments. On the

other hand, conformal theories in higher dimensions became popular after Maldacena's famous

3



article [Maldacena (1999)], where a duality between a gravity theory in AdS (type IIB string

theory in AdS5× S5) and a conformal �eld theory in the boundary (N = 4 supersymmetric Yang-

Mills) was shown. This AdS/CFT correspondence along with holographic techniques have found

applications not only in black holes physics but also in other areas such as QCD [Ammon and

Erdmenger (2015); Brodsky et al. (2015); Deur et al. (2015)].

Beyond the Standard Model it has been postulated supersymmetry, based on transformations

that relate bosons and fermions [Weinberg (2000)]. These models refer to an action principle

de�ned in the �super-space�, which is a place where bosonic and fermion quantities (described by

Grassmann's variables) live together. To overcome the Coleman-Mandula theorem: �space-time

and internal symmetries cannot be combined in any but a trivial way�, see [Pelc and Horwitz

(1997)], the concept of symmetry is generalized to a Z2-graded algebra, or superalgebra, which is

characterized by the supercommutator [[A,B]],

� [[A,B]] = [A,B] if A and B are bosonic generators,

� [[A,B]] = [A,B] if one generator is bonosic while another is fermionic,

� [[A,B]] = {A,B} = AB +BA if both generators are fermionic.

To discriminate between bosonic and fermionic objects it is necessary to introduce a grading op-

erator Γ, Γ2 = 1, that commutes with all bosonic generators and anti-commutes with fermionic

ones. The conserved quantities that generate the supersymmetric transformations are called super-

charges and are the fermionic operators. For the study of supersymmetry outside the framework

of quantum �eld theory, the concepts of pseudo-classical mechanics [Berezin and Marinov (1975,

1976); Casalbuoni (1976)] and its quantum version, supersymmetric quantum mechanics [Witten

(1981, 1982); Cooper et al. (1995)], were introduced. The latter has become an invaluable tool

in the study of solvable potentials, and is closely related to the theory of integrable classical �eld

systems and their solitonic and �nite-gap type solutions [Matveev and Salle (1991)]. Details of this

formalism are presented in the next chapter.

At this point it is clear that symmetries govern physics, and in this context, the notion of

hidden symmetries becomes relevant [Cariglia (2014)]. To explain it, let us consider again classical

mechanics. If, regardless of the initial conditions, it happens that the nature of the trajectories in

some system is �special � (in a geometric sense), this should indicate on the presence of the hidden

symmetries. Form the perspective of symmetry transformations, these objects mix the coordinate

and velocity (momenta) variables in Lagrangian (Hamiltonian) formalism. At the quantum level,

hidden symmetries can explain peculiar properties of the physical spectrum, such as a degeneration.

Take, for example, the case of the Kepler-Coulomb problem, where we know that the system is

invariant under rotations and that the particle trajectories, being conical sections, lie in the plane

orthogonal to the angular momentum vector. We also know that the geometric properties are
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determined by the energy and the angular momentum itself, but there is one more special property,

the orientation of the trajectory, which is given by the so-called Laplace-Runge-Lentz vector to be

the second-order in canonical momenta quantity. This vector integral is also relevant at a quantum

level because it explains the �accidental� degeneration in the spectrum of the hydrogen atom model

[Pauli (1926)]. From now on, the nonlinear in canonical momenta integrals of motion di�erent from

Hamiltonian, like the mentioned Laplace-Runge-Lentz vector, will be called hidden symmetries. To

study the geometric interpretation of these objects, which are usually related to Killing tensors and

conformal Killing tensors [Cariglia (2014)], a good approach corresponds to the Eisenhart-Duval

lift [Cariglia et al. (2018)], the procedure by which classical trajectories are identi�ed with the null

geodesics of a non-trivial geometry with two extra dimensions. Some other well known examples

where these objects play a key role are the three-dimensional isotropic harmonic oscillator [Jauch

and Hill (1940); Fradkin (1965)], the anisotropic harmonic oscillator [Bonatsos et al. (1994); de Boer

et al. (1996)], the Higgs oscillator [Zhedanov (1992); Evnin and Rongvoram (2017)], nonlinear

supersymmetry [Plyushchay (2019)] and a charged particle in a monopole background [Plyushchay

and Wipf (2014); Inzunza et al. (2020b)].

The hidden symmetries satisfy nonlinear algebras in the general case. The �rst examples of

nonlinear algebras introduced in �eld theory literature were the in�niteW algebras [Zamolodchikov

(1985)], which are necessary to study the nature of the in�nite-dimensional groups that appear in

two-dimensional conformal models. The listed above systems are examples of elementary models

whose associated integrals of motions satisfy �nite W algebras, which in turns, have played a

relevant role in understanding of their in�nite counterpart [de Boer et al. (1996)].

In the particular case of one-dimensional quantum mechanics, the supersymmetric algorithm

allows us to build families of solvable potentials that have spectral peculiarities, perfectly encoded in

hidden symmetries. A good example of this are the rational deformations of the harmonic oscillator,

characterized by a potential of the form x2 − 2 ln(W (x))
′′, where W (x) is a regular polynomial on

the real line [Krein (1957); Adler (1994)]. Systems of this nature �nd importance in the �eld of

exceptional orthogonal polynomials, see for example [Dubov et al. (1994); Quesne (2012); Gómez-

Ullate et al. (2013)]. The corresponding spectrum of this kind of systems is divided into g subsets

of equidistant energy levels, isolated from each other. The �rst (g − 1) subsets, or bands, have a

�nite number of levels, while the last band has in�nite number of equidistant discrete levels. In

[Cariñena and Plyushchay (2017)], the spectrum-generating ladder operators for these systems were

built, and they turned out to be higher order symmetry operators.

This Thesis reviews in a self-contained manner the results obtained within the framework of a

three-years research project, in which we address the following problems:

a) Connection between di�erent mechanical systems through symmetries
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The so(2, 1) conformal algebra

[D,H] = iH , [D,K] = −iK , [K,H] = 2iD ,

describes di�erent quantum systems with continuous spectrum, that is, H could represent the

Hamiltonian of a free particle, Calogero models, monopole-charge system, etc. This algebra is

isomorphic to the sl(2,R) algebra,

[J0,J±] = ±J± , [J−,J+] = 2J0 ,

where J0 is a compact generator that represents the Hamiltonian of a con�ned system, such as the

harmonic oscillator. We address the problem of establishing a mapping between these two forms of

dynamics associated with conformal algebra. Such a transformation would be useful, particuarly,

for mapping conserved quantities that are easier to identify for one system than for the other.

b) Hidden and bosonized supersymmetry

In quantum mechanics, the re�ection operator R is de�ned by Rx = −xR and Rp = −pR. If

we choose the supersymmetric grading operator Γ to be R, we can construct bosonized supersym-

metric systems [Plyushchay (1996, 2000a); Gamboa et al. (1999); Correa et al. (2007); Correa and

Plyushchay (2007); Correa et al. (2008); Jakubsk�y et al. (2010)] which do not employ fermionic

degrees of freedom. We focus on the origin of the hidden bosonized superconformal symmetry of

the harmonic oscillator in one dimension [de Crombrugghe and Rittenberg (1983); Balantekin et al.

(1988); Cariñena and Plyushchay (2016a); Bonezzi et al. (2017)], that is, we build an unconven-

tional supersymmetric system that, after nonlocal transformation of the Foldy-Wouthuysen type

and a dimensional reduction [Jakubsk�y et al. (2010)], produces the superalgebra we are looking for.

c) Hidden symmetries in rationally extended conformal mechanics

The simplest conformal invariant system that one can construct is

S =

∫ t2

t1

(
1

2
q̇2 +

g

2q2

)
dt , q > 0 ,

where g is a dimensionless constant that should be non-negative in classical mechanics and g ≥ −1/4

at the quantum level. This model does not have a well-de�ned invariant ground state and to

eliminate this de�ciency, de Alfaro, Fubini, and Furlan used a particular coordinate and time

change to transform the latter action into

S =

∫ τ2

τ1

(
1

2
ẏ2 +

g

2y2
+
ω2

2
y2

)
dτ , x > 0 .

The corresponding Hamiltonian is compact and has a well-de�ned ground state at the quantum

level, see [de Alfaro et al. (1976)]. This system, called the de Alfaro, Fubini and Furlan model (AFF),
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and its supersymmetric extensions [Akulov and Pashnev (1983); Fubini and Rabinovici (1984);

Ivanov et al. (1989); Donets et al. (2000); Fedoruk et al. (2012)] have attracted a great attention

over the years in a variety of �elds such as particles dynamics in black hole backgrounds [Gibbons

and Townsend (1999); Michelson and Strominger (1999); de Azcarraga et al. (1999); Britto-Pacumio

et al. (2000); Galajinsky (2015)], cosmology [Duval et al. (1991); Pioline and Waldron (2003)],

nonrelativistic AdS/CFT correspondence [Son (2008); Balasubramanian and McGreevy (2008);

Barbon and Fuertes (2008); Chamon et al. (2011)], QCD con�nement problem [Brodsky et al.

(2015); Deur et al. (2015)], physics of Bose-Einstein condensates [Prain et al. (2010); Ohashi et al.

(2017)] and anyon statistics [Leinaas and Myrheim (1977, 1988); Mackenzie and Wilczek (1988)].

We apply the generalized Darboux-Crum-Krein-Adler transformation (DCKA) [Moutard (1878,

1875); Darboux (1882); Crum (1955); Krein (1957); Adler (1994); Matveev and Salle (1991)] to

the AFF model to construct rational deformations of this system. The objective is to follow the

approach given in [Cariñena and Plyushchay (2017)] to �nd the ladder operators that generate

spectrum of these systems.

d) Hidden symmetries in three-dimensional conformal mechanics

Consider a charged particle moving in a magnetic �eld generated by a Dirac monopole, i.e., in

a monopole background [Sakurai (1994)], which is also subject to a central potential of the form

V (r) = α
2mr2 . In [Plyushchay and Wipf (2014)] it had already been shown that the system has

hidden symmetries when α = (eg)2, where e and g are the particle's electric charge and the monopole

magnetic charge, respectively. It was also shown that the system allows an N = 4 supersymmetric

extension. We investigate the possibility of obtaining hidden integrals of motion when the central

potential is changed for V (r) = α
2mr2 + mωr2

2 , and we look for possible supersymmetric extensions.

The results obtained from problem a) are used to investigate this problem.

The results of investigation of the listed problems were reported in the articles [Cariñena et al.

(2018); Inzunza and Plyushchay (2018, 2019a,b); Inzunza et al. (2020a,b)].

The subsequent main part of the Thesis is organized as follows. In Chap. 1 we review the

supersymmetric quantum mechanics formalism as well as the generalized Darboux transformations

and their con�uent extensions. In Chap. 2 we revisit the one-dimensional conformal mechanics

model of de Alfaro, Fubini and Furlan [de Alfaro et al. (1976)], as well as its N = 2 supersymmetric

extension, leading us to the osp(2, 2) superconformal symmetry. In Chap. 3, based on [Inzunza

et al. (2020a)], we consider the conformal bridge transformation and its applications to models in

one and two dimensions. In Chap. 4, we explain the origin of the hidden bosonic superconformal

symmetry of the harmonic oscillator [Inzunza and Plyushchay (2018)]. In Chap. 5 we review

the results of ref. [Cariñena et al. (2018)], where rational extensions of the conformal mechanics

model characterized by the potential m(m+1)
x2 with m = 1, 2, . . ., as well as its spectrum-generating

ladder operators are constructed. In Chap. 6, following [Inzunza and Plyushchay (2019a)], we
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consider supersymmetric extensions of the rationally deformed system of Chap. 5, as well as its

complete spectrum-generating nonlinear superalgebra. In Chap. 7 we exploit a discrete Klein four-

group symmetry of the Schrödinger equation for the AFF model to generalize the construction of

rationally extended systems and the spectrum-generating ladder operator sets for the case in which

integer parameter m is replaced by a real number ν ≥ −1/2 [Inzunza and Plyushchay (2019b)].

In this case, the con�uent Darboux transformations appear naturally. Chap. 8 and 9 are devoted

to investigation, in the light of hidden symmetries, of the conformal mechanics in a monopole

background as well as its supersymmetric extension, which is characterized by a three-dimensional

realization of the osp(2, 2) superconformal symmetry [Inzunza et al. (2020b)]. The Thesis ends with

its Conclusion and Outlook. In Appendix, some technical details are collected.
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Chapter 1

Supersymmetric quantum mechanics

The application of supersymmetric ideas in nonrelativistic quantum mechanics has given us a

better understanding of the problem of solvable potentials and its associated hidden symmetries.

In this context, the main technique is the factorization method [Infeld and Hull (1951); Cooper

et al. (1995)], which relates a particular quantum mechanical system with another one (the so-

called superpartner). In the one-dimensional case, the formalism of construction of such operators

(starting from a well known quantum system) receives the name of Darboux-Crum-Krein-Adler

transformation [Moutard (1878, 1875); Darboux (1882); Crum (1955); Krein (1957); Adler (1994);

Matveev and Salle (1991)]. An algorithmic procedure involves a given number of eigenstates of the

original system, typically called �seed states�, and in its con�uent extension Jordan states are also

considered [Schulze-Halberg (2013); Correa et al. (2015); Contreras-Astorga and Schulze-Halberg

(2015)]. In this chapter we revisit these methods.

Generalization to higher spatial dimensions can be reformulated in di�erent ways, see [Kirchberg

et al. (2003); Ivanov et al. (2003); Kirchberg et al. (2005); Bellucci et al. (2005, 2006); Kozyrev et al.

(2017)]. In this Thesis, we just consider the approach of a given Dirac Hamiltonian, whose square

produces a supersymmetric Hamiltonian operator [Cooper et al. (1995)].

1.1 The one-dimensional case

In one-dimensional systems, the factorization method consists in introducing intertwining operators

of the form

A =

√
~2

2m

d

dx
+W (x) , A† = −

√
~2

2m

d

dx
+W (x) , (1.1.1)

which satisfy

AA† = H+ , A†A = H− , H± = − ~2

2m
d2

dx2 +W (x)2 ± ~√
2m
W (x)′ . (1.1.2)
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Here W (x) is called superpotential and H± are the superpartner systems. Now, let us assume we

know a function ψ∗ such that H−ψ∗ = 0. This de�nes a nonlinear Riccati type equation for W

W (x)2 − ~√
2m

dW

dx
= u(x) , u = (x) =

~2

2m

1

ψ∗

d2

dx2
ψ∗ , (1.1.3)

and a particular solution of which is

W (x) = − ~√
2m

ψ′∗
ψ∗

= − ~√
2m

ln(ψ∗)
′ ⇒ A =

~√
2m

(
d

dx
− ln(ψ∗)

′
)

=
~√
2m

ψ∗
d

dx

1

ψ∗
,

(1.1.4)

which in turns implies Aψ∗ = 0. This result allows us to conclude the following: For a given well

known physical system we can select one of the two linear independent (formal) zero energy solutions

to recognize the associated superpotential and use it to construct a new quantum mechanical system

given by H+. From the �rst equation in (1.1.4) it can be concluded that ψ∗ must not have zeros

in the domain of H− to obtain a priori, a regular superpotential and a posteriori, a well de�ned

superpartner in the same domain. If the selected state does not ful�ll this condition we call the

resulting system as a �virtual system� that makes no physical sense1. One typically refers to ψ∗ as

a seed state.

On the other hand, the action of operator A on other eigenfunctions of H− produces eigenstates

of H+. To show this statement we use Eq. (1.1.2) to deduce the intertwining relations

AH− = H+A , A†H+ = H−A
† . (1.1.5)

Then, if ψλ is an eigenstate of H− with eigenvalue λ we get

H−ψλ = λψλ ⇒ H+ (Aψλ) = λ (Aψλ) . (1.1.6)

Of course these relations also work for the second linearly independent solution of the form

ψ̃λ = ψλ

∫ x dζ

(ψλ(ζ))2
, (1.1.7)

which together with ψλ satis�es W (ψλ, ψ̃λ) = 1, where W (., .) is the Wronskian of two functions.

It is not di�cult to show that operator A† annihilates the state Aψ̃∗ = 1/ψ∗ which is one of

the zero eigenvalue solutions of H+
2. Knowing this, one can say something about the spectrum

of the latter Hamiltonian in correspondence with the behavior of the seed state. First, acting on

physical states of H−, operator A produces physical states of H+ and second, if ψ∗ is a physical

1Such virtual systems are useful in the context of higher order supersymmetry, see for example [Arancibia et al.
(2013); Plyushchay (2017); Cariñena et al. (2018)].

2Note that with this method we only obtain one of the two linear independent solutions since Aψ∗ = 0. To obtain
the second linear independent solution we should extend the transformation by applying it to Jordan states.
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state, then the spectrum of H+ does not have this energy level. On the other hand, if the seed

state is nonphysical, two things could happen: 1) 1/ψ∗ is normalizable and system H+ possesses

an extra level and 2) 1/ψ∗ is nonphysical and both systems are isospectral.

Finally, suppose we have a given number of di�erential operators denoted by Ii, each of them of

a certain di�erential order di, which together with H− span a symmetry algebra. In this context,

it is not di�cult to show the relation [H+, AIiA
†] = A[H−, Ii]A

†, which means that when operator

Ii is the integral of motion of H−, then A(Ii)A
† (of di�erential order di + 2) is the integral for

H+ and the system is described (in the general case) by a certain nonlinear deformed algebra. In

conclusion, the method not only serves to map states but also to obtain hidden integrals of motion

of the generated system. This procedure is known as �Darboux-dressing�.

We have the complete picture to extend our superpartner systems to supersymmetric quantum

mechanics. We use our Hamiltonians and intertwiners to construct the 2× 2 matrix operators

H =

 H+ 0

0 H−

 , Q1 =

 0 A

A† 0

 , Q2 = iσ3Q1 , (1.1.8)

which satisfy the N = 23 Poincaré superalgebra

[H,Qa] = 0 , {Qa,Qb} = 2δabH , (1.1.9)

with Z2 grading operator Γ = σ3. In the case in which the state ψ∗ (or 1/ψ∗) is the physical ground

state of H− (H+), then the spinor (0, ψ∗)
t (or (1/ψ∗, 0)t) is the supersymmetric invariant

ground state of H. Otherwise supersymmetry is spontaneously broken.

The method described in this paragraph is called the Darboux transformation and is the �rst

step in an iterative process. In the next step we can produce a third new Hamiltonian by taking

a seed state from H+ and so on. The �nal form of the method after a several number of steps is

called the �Darboux-Crum-Krein-Adler transformation� (DCKA transformation for short) whose

details are explored in the following section.

1.2 DCKA transformation

Let us start with the equation

Lψλ = λψλ , L = − d2

dx2
+ V (x) , (1.2.1)

corresponding to the eigenvalue problem of a Schrödinger type operator L. In this paragraph we

treat Eq. (1.2.1) as a formal second order di�erential equation on some interval (a, b). Consider

3Here N indicates the number of true fermionic integrals.
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now a set of solutions ψk corresponding to eigenvalues λk, k = 1, . . . , n. We use them as seed states

for our DCKA transformation and generate the new Schrödinger operator

L̆Ψλ = λΨλ , L̆ = − d2

dx2
+ V (x)− 2

d2

dx2
lnW (ψ1, . . . , ψn) . (1.2.2)

If the set of the seed states is chosen in such a way that the generalized Wronskian of n functions

W (f1(x), . . . , fn(x)) = det

(
dfi(x)

dxj−1

)
, i, j = 1 . . . , n , (1.2.3)

takes nonzero values on (a, b), then the potential of the generated system will also be nonsingular

there. In general case, solutions of (1.2.2) are obtained from solutions of Eq. (1.2.1) as follows

Ψλ =
W (ψ1, . . . , ψn, ψλ)

W (ψ1, . . . , ψn)
= Anψλ , (1.2.4)

where An is the di�erential operator of order n de�ned recursively as

An = An . . . A1 , Ak = Ak−1ψk
d

dx

(
1

Ak−1ψk

)
, k = 1, . . . , n, A0 = 1 . (1.2.5)

Note that this operator is the natural generalization of (1.1.4) with ~/
√

2m = 1 and by the con-

struction, kerAn = span{ψ1, . . . , ψn}. Operator An and its Hermitian conjugate A†n intertwine the

operators L and L̆,

AnL = L̆An , A†nL̆ = LA†n , (1.2.6)

and satisfy relations

A†nAn =

n∏
k=1

(L− λk) , AnA†n =

n∏
k=1

(L̆− λk) . (1.2.7)

From the �rst equation in (1.2.7) one can �nd that kerA†n = span{Anψ̃1, . . . ,Anψ̃n}. Similarly to

(1.2.4), A†nΨλ = ψλ for Ψλ /∈ kerA†n, and

A†n
˜

(Anψ̃k) = ψk ∈ kerAn .

Following the same approach as in the previous section, we can also use the pair L and L̆ and

their corresponding intertwining operators to construct an N = 2 superextended system described

by the 2× 2 matrix Hamiltonian and the supercharges given by

H =

 H1 ≡ L̆− λ∗ 0

0 H0 ≡ L− λ∗

 , Q1 =

 0 An
A†n 0

 , Q2 = iσ3Q1 , (1.2.8)

where λ∗ is a constant associated with the energy levels of the seed states. These generators produce
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the (anti)commutation relations

[H,Qa] = 0 , {Qa,Qb} = 2δabPn(H+ λ∗) , (1.2.9)

which for n = 1 correspond to an N = 2 Poincaré supersymmetry and for n = 2, 3, . . ., we have a

nonlinear deformation of the latter supersymmetry (here Pn(η) represents a polynomial of order n

in η). Examples of this kind of systems will be the main focus in Chap. 6.

The iterative nature of DCKA transformation allows us to derive some useful Wronskian iden-

tities for a given set of eigenstates. They are shown in Appendix A.

1.3 Jordan states and con�uent Darboux transformation

Jordan states correspond to functions that are annihilated by a certain polynomial of the Schrödinger

operator L [Correa et al. (2015)]. They were used, for example, in the construction of isospectral

deformations of the harmonic oscillator [Cariñena and Plyushchay (2016b, 2017); Inzunza and

Plyushchay (2018)], and also they can be used to construct solutions of the KdV equation [Correa

and Fring (2016); Mateos Guilarte and Plyushchay (2017)]. These Jordan states will play a key

role throughout this manuscript. This time we will focus our attention on building solutions of the

fourth order di�erential equation (L− λ∗)2χ∗ = 0.

Let us take an eigenstate ψ∗ with eigenvalue λ∗ as a seed state of the Darboux transformation.

The corresponding intertwining operators are

Aψ∗ = ψ∗
d

dx

(
1

ψ∗

)
, A†ψ∗ = − 1

ψ∗

d

dx
ψ∗ . (1.3.1)

According to Eq. (1.2.7), their product gives us the shifted Schrödinger operator A†ψ∗Aψ∗ = L−λ∗,

whose kernel is spanned by the linear independent states ψ∗ and ψ̃∗. The problem of constructing

Jordan states reduces then to solving equations

A†ψ∗Aψ∗Ω∗ = (L− λ∗)Ω∗ = ψ∗ , A†ψ∗Aψ∗Ω̆∗ = (L− λ∗)Ω̆∗ = ψ̃∗ . (1.3.2)

Their solutions are given, up to a linear combination of ψ∗ and ψ̃∗, by particular solutions of

respective inhomogeneous equations,

Ω∗ = ψ∗

∫ x

a

dζ

ψ2
∗(ζ)

∫ b

ζ

ψ2
∗(η)dη , Ω̆∗ = ψ∗

∫ x

a

dζ

ψ2
∗(ζ)

∫ b

ζ

ψ∗(η)ψ̃∗(η)dη . (1.3.3)

Here the integration limits are chosen coherently with the region where the operator L is de�ned,
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and we have the relations

W (ψ∗,Ω∗) =

∫ b

x

ψ2
∗dζ , W (ψ∗, Ω̆∗) =

∫ b

x

ψ∗ψ̃∗dζ , (1.3.4)

which will be useful to produce nonsingular con�uent Darboux transformations.

Let us inspect now the role of Jordan states (1.3.3) in DCKA transformation generated by a set

of the seed states {ψn}. The intertwining operator (1.2.5) and Eqs. (1.2.6) and (1.3.2) give us the

relations

Anψ∗ = (L̆− λ∗)AnΩ∗ , Anψ̃∗ = (L̆− λ∗)AnΩ̆∗ . (1.3.5)

If the state ψ∗ (or ψ̃∗) is annihilated by An, i.e., if the set of the seed states {ψn} includes ψ∗ (or

ψ̃∗), the function AnΩ∗ (or AnΩ̆∗) will be an eigenstate of L̆ with eigenvalue λ∗ which is available to

produce another Darboux transformation if we consider L̆ as an intermediate system. Otherwise,

the indicated function is a Jordan state of L̆, and in correspondence with (1.3.3) we have

AnΩ∗ = (Anψ∗)
∫ x
a

dζ
(Anψ∗)2(ζ)

∫ b
ζ

(Anψ∗)2(η)dη , (1.3.6)

AnΩ̆∗ = (Anψ∗)
∫ x
a

dζ
(Anψ∗)2(ζ)

∫ b
ζ

(Anψ∗)(η)Ãnψ∗(η)dη (1.3.7)

up to a linear combination with Anψ∗ and Ãnψ∗.

Having in mind that Jordan states appear naturally in the con�uent generalized Darboux trans-

formations [Correa et al. (2015)], one can consider directly a generalized Darboux transformation

based on the following set of the seed states : (ψ1,Ω1, . . . , ψn,Ωn). This generates a Darboux-

transformed system which we denote by L̂[2n]. The intertwining operator AΩ
2n as a di�erential

operator of order 2n is built according to the same rule (1.2.5), but with the inclusion of Jordan

states into the set of generating functions. By the construction, this operator annihilates the chosen

2n seed states, and one can show that

(AΩ
2n)†AΩ

2n =
n∏
i=1

(L− λi)2 , AΩ
2n(AΩ

2n)† =

n∏
i

(L̂[2n] − λi)2 . (1.3.8)

This, in particular, means that ker(AΩ
2n)† = span{AΩ

2nψ̃1,AΩ
2nΩ̆1, . . . ,AΩ

2nψ̃n,AΩ
2nΩ̆n}.

1.4 A three-dimensional example

Unlike the one-dimensional case, three-dimensional supersymmetric quantum mechanics does not

have a unique generalization. Here, following [Cooper et al. (1995)], we begin with a charged

massless Dirac particle in a four-dimensional Euclidian space. Assuming the presence of an external
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electromagnetic �eld, the Dirac's equation takes the form (~ = e = c = 1)

γµPµΨ = 0 , Pµ = −i∂µ +Aµ , µ = 0, 1, 2, 3 , (1.4.1)

where Aµ is the associated U(1) gauge potential, the metric is just δµν and γµ are the Euclidean

gamma matrices

γi =

 0 −iσi
iσi 0

 , γ0 =

 0 1

1 0

 , Γ = γ5 = iγ0γ1γ2γ3γ4 =

 1 0

0 −1

 . (1.4.2)

Assuming that the gauge �eld does not depend on t, we can look for stationary solutions of the

form Ψ = eiλtΦ(r). Expanding equation (1.4.1) in terms of this ansatz we get

 0 λ

λ 0

Φ = Q1Φ , Q1 =

 0 σ · (∇+ iA)−A0

−σ · (∇+ iA)−A0 0

 . (1.4.3)

By applying Q1 from the left, the Schrödinger equation λ2Φ = HΦ is obtained, where

H = (p +A)2 +A2
0 + Π+ σ · (E +B) + Π− σ · (E −B) , Π± =

1

2
(1± Γ) , (1.4.4)

is a Pauli Hamiltonian operator with E = −∇A0 and B =∇×A. The operator Q1, together with

Q2 = iΓQ1 and H produce a three-dimensional realization of the N = 2 Poincaré supersymmetry

with grading operator Γ. Furthermore, in the dual case E = B (antidual case E = −B) the system

possesses the nontrivial bosonic integral of motion S− = Π− σ (S+ = Π+ σ), and the commutation

relations [S−i ,Qa] ([S+
i ,Qa]) with a = 1, 2, produce other 3 pairs of supercharges.

The system described by (1.4.4) has been studied properly in [Kirchberg et al. (2005)] where

authors show that dual and anti-dual cases are the only ones that admit extensions of the Poincaré

supersymmetry. In [Plyushchay and Wipf (2014)], the case of dual and anti-dual dyon (where the

magnetic �elds is due to a Dirac magnetic monopole) was considered, and it was shown that the

system possesses the exceptional N = 4 superconformal algebra D(1, 2;α) [Ivanov et al. (2003)].

1.5 Remarks

The tools considered in this chapter are going to be our principal methods for the rest of this

Thesis. When we study one-dimensional potentials, our initial system for the DCKA transformation

will always be a Newton-Hooke conformal invariant particle [Niederer (1973); Galajinsky (2010);

Andrzejewski (2014); Galajinsky (2018)], the properties of which are described in Chaps. 2 and 3.

Our principal target is to study the hidden symmetries of the nontrivial resulting systems and their
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supersymmetric extensions. This is the main content of Chaps. 4-7.

In Chap. 8 and 9 we study a three-dimensional generalization of the system introduced in

Chap. 2, as well as its supersymmetric extensions. The resulting system will have superconformal

symmetry that can be reinterpret in accordance with Sec. 1.4, but with a nontrivial gauge potential.

16



Chapter 2

One-dimensional conformal

mechanics

As it was noted in the introduction, conformal invariance appears as a natural extension of the

Poincaré symmetry of space-time, and involves the set of transformations that perform the change

gµνdx
µdxν → Ω(x)gµνdx

µdxν , where gµν is the metric tensor and Ω(x) the conformal factor

[Francesco et al. (1997); Sundermeyer (2014)]. The transformations that make this job (preser-

vation of angles) are the space-time dilatations and the special conformal transformations. Some

examples of space-time manifolds that allow this extension are the �at space (Minkowski), together

with de Sitter (dS) and Anti de Sitter (AdS) spaces [Francesco et al. (1997); Nakahara (2003)].

The so(2, 1) conformal algebra is given by

[D,H] = iH , [D,K] = −iK , [K,H] = 2iD , (2.0.1)

being H, D and K the generators of time translations, dilatations and special conformal transfor-

mations, for details we recommend [Fedoruk et al. (2012)]. Taking the linear combinations

J0 =
1

2
(α−1H + αK) , J1 =

1

2
(α−1H − αK) , J2 = D , (2.0.2)

where α is a constant that compensates the dimensions of K and H, we obtain the Lorentz algebra

in (2 + 1)-dimensional Minkowski space, with metric ηµν = diag(−1, 1, 1), given by

[Jµ,Jν ] = −iεµνρJ ρ , ε012 = 1 , (2.0.3)

17



which, in turn, is isomorphic to the sl(2 ,R) algebra, [Plyushchay (1993)],

[J0,J±] = ±J± , [J−,J+] = 2J0 , J± = J1 ± iJ2 =
1

2α
(H − α2K ± i2αD) . (2.0.4)

This algebra has the automorphisms J0 → J0 , J± → −J± , and J0 → −J0 ,J± → −J∓ , and the

Casimir element is given by

F = −JµJ µ = J 2
0 −

1

2
(J+J− + J−J+) = KH −D2 . (2.0.5)

One of the objectives of this Thesis is to study models that have both this symmetry and some

supersymmetric extensions of it. We also study possible nonlinear extensions of (super)conformal

algebra, performed in terms of hidden symmetries.

This chapter is devoted to the analysis of classical and quantum conformal mechanical models.

In Sec. 2.1 we review the theory behind the de Alfaro, Fubini, and Furlan (AFF) model, presented

in [de Alfaro et al. (1976)], that looks for a well-de�ned one-dimensional quantum system with a

conformal invariant ground state. In Sec. 2.2 we use the tools developed in Chap. 1 to construct

the osp(2, 2) supersymmetric extension of the AFF model.

2.1 The de Alfaro, Fubini and Furlan model

Consider the one-dimensional system given by the action, [de Alfaro et al. (1976)],

I[q] =

∫
L(q, q̇)dt , L =

1

2

(
q̇2 − g

q2

)
, (2.1.1)

where q takes values on the positive real line and has dimension [q] = [
√
t], besides g is a dimen-

sionless coupling constant which classically is assumed to be positive to avoid the �problem of fall

to the center�. This action could represent, for example, a Calogero model of two particles, but

omitting the degree of freedom of the center of mass [Calogero (1969, 1972)].

On can show that the action (2.1.1) is invariant under time translations t→ t+ αt, space-time

dilatations

x→ e
β
2 x , t→ eβt , (2.1.2)

and the spacial conformal transformations

x→ x

1− γt
, t→ t

1− γt
, (2.1.3)

where α, β and γ are parameters of the corresponding transformations. This symmetry is gen-

erated by the Hamiltonian Hg, the dilatations generator D, and generator of special conformal
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transformations K,

Hg =
1

2
(p2 +

g

q2
) , D =

1

4
(qp+ pq)−Hgt , K =

1

2
q2 − 2Dt−Hgt

2 , (2.1.4)

where p = q̇. These are the integrals of motion that satisfy the equation of the form d
dtA =

∂A
∂t + {A,H} = 0 where {, } denotes Poisson brackets. We often call objects of this type as

�dynamical integrals�, and in this case they obey the classical version of so(2, 1) algebra

{D,Hg} = Hg , {D,K} = −K , {Hg,K} = −2D , (2.1.5)

and the Casimir invariant (2.0.5) takes the value F = 1
4g. The last relation in (2.1.4) gives us the

solution of the corresponding Euler-Lagrange equation derived from (2.1.1),

q(t) =
√

2(at2 + 2bt+ c) =

√
2

(
a(t+

b

a
)2 +

F

a2

)
, (2.1.6)

where real-valued constants a, b and c correspond to the values of the integrals Hg, D and K,

respectively (for a given initial con�guration).

Note that in the case of g = 0, Hg takes the form of an object that looks like the Hamiltonian

of a free particles, but is de�ned in the restricted domain R+. The notable di�erence between this

system and the free particle Hf , which lives in R, is that the latter has two additional integrals of

motion, namely the momentum p and the Galileo boost generator χ = q̃ − pt, with q̃ ∈ R. They

produce Heisenberg algebra and together with the generators Df = χP
2 and Kf = χ2

2 , leading to

the Schrödinger symmetry [Niederer (1972); Duval and Horvathy (1994); Henkel and Unterberger

(2003); Son (2008); Aizawa (2011)],

{Df , Hf} = Hf , {Df ,Kf} = −Kf , {Hf ,Kf} = −2Df , (2.1.7)

{χ, p} = 1 , {Hf , p} = {Kf , χ} = 0 {Hf , χ} = −p , {Kf , p} = χ , (2.1.8)

{Df , χ} = − 1
2χ , {Df , p} = 1

2p . (2.1.9)

The model (2.1.1) has a problem at the quantum level, as we explain below: In the Schrödinger

picture, the quantum version of the generators (2.1.4) are given by (~ = 1)

Hν =
1

2

(
− d2

dq2
+
ν(ν + 1)

q2

)
, D =

1

4i

(
q
d

dq
+

d

dq
q

)
, K =

q2

2
, (2.1.10)

where we have parameterized g as ν(ν + 1). Obviously, the operators D and K are not integrals

of motion, however they can be promoted to dynamical integrals, in the sense of the Heisenberg
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equation dO
dt = ∂O

∂t − i[O,Hν ], by means of the unitary transformation

O → HO = e−iHνtOeiHνt . (2.1.11)

This is the general recipe for moving from the Schrödinger picture to the Heisenberg picture,

and in this last framework the operators D and K are changed for HD = D − Hνt and HK =

K − 2Dt−Hνt
2, respectively.

The HamiltonianHν is self-adjoint for the cases in which ν ≥ 0 and admits self-adjoint extensions

for ν ≥ −1/2, [Landau and Lifshitz (1965); Kirsten and Loya (2010)]. In these cases, Hν has a

continuous spectrum E = κ2/2, with κ ∈ R, in the domain {ψ ∈ L2((0,∞), dq)|ψ(0+) = 0} and

the physical eigenstates are given by

ψν(q;κ) =
√
qJν+ 1

2
(κq) , (2.1.12)

where Jα(ζ) is the Bessel function of the �rst kind

Jα(ζ) =

∞∑
n=0

(−1)n

n!Γ(n+ α+ 1)
ζ2n+α . (2.1.13)

From here it is not di�cult to show that the state eiαDψν(x;κ) corresponds to the energy eαE,

which implies that the only scale-invariant solutions are those with zero energy eigenvalue, which in

this case are given by the nonphysical solutions qν+1 and q−ν , the �rst of which is not bounded at

in�nity and the second diverges when q = 0. This means that conformal symmetry is spontaneously

broken at the quantum level.

To �nd a conformal invariant model with a well-de�ned ground state, the proposal in [de Alfaro

et al. (1976)] is to consider the following change of the variables at the classical level

y(t) =
q(t)√

u+ vt+ wt2
, dτ =

dt

u+ vt+ wt2
, (2.1.14)

where u > 0, v and w > 0 are real constants with dimensions [u] = 1, [v] = 1/t and [w] = 1/t2, and

y > 0. This is in fact related to a change of coordinates in an AdS2 space, where t is not a good

global coordinate, in contrast to τ [Michelson and Strominger (1999)]. Under the transformation

(2.1.14), action (2.1.1) takes the form

∫
L(y, y′)dτ + 1

4

∫
dτ d

dτ [(v + 2wt(τ))q2(t(τ))] = I[y] + Isurface , (2.1.15)

where L(y, y′) = 1
2 (y′2 − g

y2 − ω
2y2) , y′ = dy

dτ , and ω
2 = (4wu− v2)/4. Action I[y] =

∫
Ldτ is the

so-called de Alfaro, Fubini and Furlan (AFF) model, from where we obtain the new time translation
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generator

Hg =
1

2

(
p2 +

g

y2
+ ω2y2

)
, p = y′ . (2.1.16)

The evolution parameter τ = 1
ωacrtan( v+2wt

2ω ) varies in the �nite interval (− π
2ω ,

π
2ω ), and new

Hamiltonian (2.1.16) is conjugate to this good global time coordinate. As ω is a dimensionful

parameter, [ω] = [1/t], (2.1.16) breaks the manifest scale invariance of the original system (2.1.1),

and via such a basic mechanism the mass and length scales are introduced in holographic QCD

(often referred to as �AdS/QCD�) [Brodsky et al. (2015); Deur et al. (2015)].

In spite of the introduced scale, the action of the new system is conformal invariant as we will

see now. The dilatation generator D and the conformal transformation generator K associated

with the action I[y] are given by the explicitly depending on time τ integrals

D = 1
2

(
yp cos(2ωτ) +

(
ωy2 −Hgω

−1
)

sin(2ωτ)
)
, (2.1.17)

K = cos(2ωτ)y
2

2 +
Hg

ω2 sin2(ωτ)− sin(2ωτ)
2ω yp , (2.1.18)

which generate the Newton-Hooke symmetry, [Niederer (1973); Galajinsky (2010); Andrzejewski

(2014); Galajinsky (2018)],

{Hg,D} = −(Hg − 2ω2K ) , {Hg,K } = −2D , {D ,K } = −K , (2.1.19)

whose Casimir invariant is F = K Hg −D2 − ω2K 2 = g/4. Using Eqs. (2.1.17) and (2.1.18), one

can �nd solution to the equation of motion of the system (2.1.15),

y2(τ) =
2

ω2
(a sin2(ωτ) + ωb sin(2ωτ) + ω2c cos(2ωτ)) , (2.1.20)

where a > 0, b and c > 0 are constants corresponding to the values of the integrals Hg, D and K ,

respectively, and obeying the relation ac− b2 − ω2c2 = g/4. From the explicit form of the solution

we see that it is periodic with the period T = π/ω not depending on the value of the coupling

constant1 g. The �nite interval in which the evolution parameter τ varies corresponds to the period

of the motion of the system (2.1.15), and one can consider τ as the compact evolution parameter

that takes values on the closed interval [− π
2ω ,

π
2ω ] with identi�ed ends.

As in the previous case, if one sets g = 0, Hg is formally reduced to the Hamiltonian of the

harmonic oscillator, however the object is de�ned in R+ (we will call it as half harmonic oscillator).

If we extend for this case the domain to the entire real line, i.e., we exchange y → ỹ ∈ R, the resulting
1System given by Hamiltonian (2.1.16) is an isoperiodic deformation of the half-harmonic oscillator of frequency

ω [Asorey et al. (2007)].
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system Hos has the additional dynamical integrals

χω = ỹ cos(ωτ)− p

ω
sin(ωτ) , Pω = ωỹ sin(ωτ) + p cos(ωτ) . (2.1.21)

They are identi�ed as the initial conditions of the oscillatory motion and in terms of them, the

Hamiltonian is read as Hos = 1
2 (P 2

ω + ω2χ2
ω). The generators (2.1.21), together with generators

Hos, Dos = χωPω
2 and Kos = 1

2χ
2
ω produce the following Poisson brackets relations

{Hos,Dos} = −(Hos − 2ω2Kos) , {Hos,Kos} = −2Dos , {Dos,Kos} = −Kos , (2.1.22)

{χω, Pω} = 1 , {Hos, Pω} = ω2χω , {Hos, χω} = Pω {Kos, χω} = 0 , (2.1.23)

{Kos, Pω} = χω , {Dos, χω} = − 1
2χω , {Dos, Pω} = 1

2Pω . (2.1.24)

Note that if instead to take Hos we consider Ĥ = Hos − ω2Kos = 1
2P

2
ω one gets the algebraic

relations (2.1.7), (2.1.8) and (2.1.9), which mean that generators {Hos ,Dos ,Kos , χω , Pω} are just

another basis for the Schrödinger symmetry. In fact by taking the limit ω → 0 we recover the free

particle generators.

According to [Dirac (1949)], starting from a given symmetry algebra, one can freely designate

a particular generator or a linear combination of generators as Hamiltonian, leading to di�erent

forms of dynamics. This terminology was introduced in the context of special relativity, however,

the two models discussed above are good examples in nonrelativistic mechanics.

At the quantum level, the AFF Hamiltonian takes the form

Hν =
1

2

(
− d2

dy2
+ ω2y2 +

g(ν)

y2

)
, g(ν) = ν(ν + 1) , (2.1.25)

which as well as Hν in (2.1.10), has a bounded spectrum restricted from below in the domain

{ψ ∈ L2((0,∞), dy)|ψ(0+) = 0} for ν ≥ −1/2 [Falomir et al. (2002); Falomir and Pisani (2005)].

The normalized eigenstates of the system and its respective energy values are given by

ψν,n(y) =

√
2n!ων+ 3

2

Γ(n+ ν + 3
2 )

yν+1L
(ν+ 1

2 )
n (ωy2)e−

ωy2

2 , Eν,n = ω(2n+ ν +
3

2
) , (2.1.26)

where

L(α)
n (η) =

n∑
j=0

Γ(n+ α+ 1)

Γ(j + α+ 1)

(−η)j

j!(n− j)!
, (2.1.27)

are the generalized Laguerre Polynomials. Note that g in (2.1.25) vanishes for ν = 0 and for

ν = −1 (where we have some problems with boundary conditions) and for both cases Hν looks like
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an harmonic oscillator Hamiltonian. Indeed, the well known relations

H2n+1(η) = (−1)n22n+1L(1/2)
n (η2) , H2n(η) = (−1)n22nL(−1/2)

n (η2) , (2.1.28)

where functions Hn(η) are the Hermite polynomials, show us that in the �rst case eigenfunctions

(2.1.26) become the odd eigenstates of the harmonic oscillator (vanishing at the origin), and in the

second case, they take the form of the even eigenstates of the latter mentioned system (which do

not vanish at x = 0, thereby violating the imposed boundary conditions).

Instead to do a direct quantization of generators K and D , it is worth it to consider complex

combinations of them. In particular, in the Schrödinger picture we construct

C±ν = Hν − 2ω2K ± 2iωD =
(
Hν − ω2y2 ± 2ω(y d

dy + 1
2 )
)
, (2.1.29)

which, together with Hν , produce the commutator relations

[Hν , C±ν ] = ±2ωC±ν , [C−ν , C+
ν ] = 4ωHν , (2.1.30)

and by using the identi�cation Hν = 2ωJ0 and Cν = 2ωJ±, we recognize the sl(2,R) algebra

(2.0.4). On the Hilbert space of the AFF system, the states (2.1.26) correspond to an in�nite-

dimensional unitary irreducible representation of the sl(2,R) algebra of the discrete type series D+
α

with α = 1
2ν+ 3

4 , and the Casimir operator takes the value Fν = J µJµ = −α(α−1) = 3
16−

1
4ν(ν+1),

[Plyushchay (1993)].

As operators C±ν are not integrals of motion, when we go to the Heisenberg picture, it is necessary

to replace operators C± by the dynamical integrals HC± = e∓i2ωtC±.

Relations (2.1.30) clearly show us that C±ν are ladder operators which change the energy in

±2ω. Their action can be computed by means of the corresponding recurrence relations of Laguerre

polynomials,

y d
dyL

α
n(y)− yLαn(y) + αLαn = (n+ 1)Lα−1

n+1 ,
d
dyL

α
n(y)− Lαn(y) = −Lα+1

n (y) ,

d
dyL

α
n(y) = −Lα+1

n−1(y) , y d
dyL

α
n(y) + αLαn(y) = (n+ α)Lα−1

n (y) . (2.1.31)

Using this we get

C−ν ψν,n = 2ω
√
n(n+ ν + 1

2 )ψν,n−1 , (2.1.32)

C+
ν ψν,n = 2ω

√
(n+ 1)(n+ ν + 3

2 )ψν,n+1 , (2.1.33)

from where we see that the lowering operator C−ν annihilates the ground state of the system. In
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next section we will show that these operators have their own origin in supersymmetric quantum

mechanics.

2.2 The osp(2|2) superconformal symmetry

The aim of this section is to construct an N = 2 super-extension of the AFF model (2.1.25). To

this end, we apply the method introduced in Chap. 1.

For the construction let us use the ground state ψν,0 ∝ yν+1e−ωy
2/2 as a seed state for the �rst

order Darboux transformation. The associated intertwining operators are

A−ν =
1√
2

(
d

dy
+ ωy − ν + 1

y

)
, A+

ν = (A−ν )† , (2.2.1)

which produce

A+
ν A
−
ν = Hν − ω(ν +

3

2
) := H− , A−ν A

+
ν = Hν+1 − ω(ν +

1

2
) := H+ , (2.2.2)

and intertwining relations take the form (1.1.5). Using the recurrence relations that Laguerre

polynomials satisfy (2.1.31), one gets the explicit action of A±ν on eigenstates (2.1.26),

A−ν ψν,n = −
√

2nω ψν+1,n−1 , A+
ν ψν+1,n−1 = −

√
2nω ψν,n . (2.2.3)

With the help of (2.2.1) we can construct the matrix generators

Heν =

 Hν+1 − ω(ν + 1/2) 0

0 Hν − ω(ν + 3/2)

 , (2.2.4)

Q1
ν =

 0 A−ν

A+
ν 0

 , Q2
ν = iΓQ1

ν , (2.2.5)

where Γ = σ3 is the Z2 grading operator. These generators produce the Poincaré supersymmetry

(1.1.9). Operator Heν has the spectrum 2ωn, n = 0, 1, . . . , and the unique ground state (0, ψν,0)t

is annihilated by all generators in (2.2.4), therefore supersymmetry is in the exact phase.

On the other hand, the system (2.1.25) possesses the nonphysical solutions ψ−ν,n = ψν,n(iy) of

the eigenvalues −En,ν2. Then, instead of the ground state we could select the function ψ−ν,0 ∝

yν+1eωy
2/2 as a seed state. The resulting intertwining operators are

B−ν =
1√
2

(
d

dy
− ωy − ν + 1

y

)
, B+

ν = (B−ν )† . (2.2.6)

2The stationary Schrödinger equation Hνψν,n = Eψν,n has a discrete symmetry group, and the transformation
de�ned as y → iy and Eν,n → −Eν,n is an element of this group, see Chap. 7. The nonphysical eigenstates produced
by the action of the mentioned group can be used in the Darboux transformations, resulting in new solvable systems.
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Their products give us

B+
ν B
−
ν = Hν+ω(ν+

3

2
) = H−+ω(2ν+3) , B−ν B

+
ν = Hν+1+ω(ν+

1

2
) = H++ω(2ν+1) , (2.2.7)

and in terms of H± the intertwining relations take the form

B−ν H− = (H+ − 2ω)B−ν , B+
ν H+ = (H− + 2ω)B+

ν . (2.2.8)

Coherently with this, the action of operators B±ν on the eigenstates is

B−ν ψν,n = −
√

(2n+ 2ν + 3)ω ψν+1,n , B+
ν ψn,ν+1 = −

√
(2n+ 2ν + 3)ω ψν,n . (2.2.9)

Just like we did with A±ν , we can also use B±ν to build other matrix operators

Hbν =

 Hν+1 + ω(ν + 1/2) 0

0 Hν + ω(ν + 3/2)

 , (2.2.10)

S1
ν =

 0 B−ν

B+
ν 0

 , S2
ν = iΓS1

ν , (2.2.11)

which again will satisfy the N = 2 Poincaré supersymmetry, but now, in the spontaneously broken

phase3; the spectrum of Hbν is ω(2n+2ν+3), n = 0, 1, . . . , and there is no physical eigenstate which

is simultaneously annihilated by both odd operators Saν . On the other hand one can reinterpret

the object Hbν as a linear combination of Heν and the nontrivial integral

Rν =
1

2ω
(Heν −Hbν) =

1

2
σ3 − (ν + 1) , (2.2.12)

that plays the role of what will become an R symmetry generator.

Now, remember that the system (2.1.25) has the two second order ladder operators (2.1.29).

Namely, they are constructed from A±ν and B±ν as follows

B−ν A
+
ν = C+

ν+1 , A−ν B
+
ν = C−ν+1 , (2.2.13)

A+
ν B
−
ν = C+

ν , B+
ν A
−
ν = C−ν . (2.2.14)

By using this structure together with the Eqs. (2.2.9) and (2.2.3) it is easy to check the relations

(2.1.32). Also, by means of the Eqs. (2.2.2) and (2.2.7), in addition with the intertwining relations

corresponding to A±ν and B±ν , it is easy to derive the sl(2,R) algebra (2.1.30).

Returning to the matrix operators subject, the relations (2.2.13)-(2.2.14) show us that the anti-

3The seed state ψ−ν,0 is nonphysical and 1/ψ−ν,0 does not satisfy the boundary condition at the origin.
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commutator between generators Saν and Qaν produces the even operators

G±ν =

 C±ν+1 0

0 C±ν

 , (2.2.15)

which are the corresponding super-extensions of the ladder operators of systems Heν and Hbν . Then,

all together the generators {Heν ,G±ν ,Rν ,Qaν ,Saν } satisfy the superalgebraic relations

[Heν ,Rν ] = [Heν ,Qaν ] = 0 , (2.2.16)

[Heν ,G±ν ] = ±2ωG±ν , [G−ν ,G+
ν ] = 4ω

(
Heν − ω2Rν

)
, (2.2.17)

[Heν ,Saν ] = −2iωεabSbν , [Rν ,Qaν ] = −iεabQbν , [Rν ,Saν ] = −iεabSbν , (2.2.18)

[G−ν ,Qaν ] = ω(Saν + iεabSbν), [G+
ν ,Qaν ] = −ω(Saν − iεabSbν) , (2.2.19)

[G−ν ,Saν ] = ω(Qaν − iεabQbν) , [G+
ν ,Saν ] = −ω(Qaν + iεabQbν) , (2.2.20)

{Qaν ,Qbν} = 2δabHeν , {Saν ,Sbν} = 2δab(Heν − 2ωRν) , (2.2.21)

{Qaν ,Sbν} = δab(G+
ν + G−ν ) + iεab(G+

ν − G−ν ) . (2.2.22)

From here we realize that operators G± and Saν are not integrals of motion, and in the Heisenberg

picture we have instead the dynamical integrals HG± = e∓2ωtG± and HSaν = e−iσ3ωtSaν .

Superalgebra (2.2.16)-(2.2.22) is identi�ed with the osp(2|2) superconformal symmetry [Inzunza

and Plyushchay (2018, 2019a,b)], and has the automorphism f = f−1 given by the transformations

Heν → Heν − 4Rν = Hbν , Rν → −Rν , G±ν → G±ν , Q1
ν → −S1

ν , Q2
ν → S2

ν , S1
ν → −Q1

ν S2
ν → Q2

ν .

Transformation f shows us what would happen with the superalgebra if we had chosen Hbν instead

of Heν as our time translation generator.

For future applications, we present the superalgebraic structure in terms of nilpotent fermionic

operators

Qν =

 0 Aν

0 0

 , Wν =

 0 0

B+
ν 0

 , (2.2.23)

and its Hermitian counterpart, as follows,

[Heν ,G±ν ] = ±2ωG±ν , [G−ν ,G+
ν ] = 4ω(Heν − ω2Rν) , (2.2.24)

[Heν ,Wν ] = −2ωWν , [Rν ,Qν ] = Qν , [Rν ,Wν ] = −Wν , (2.2.25)

{Qν ,Q†ν} = Heν , {Wν ,W†ν} = Heν − 2ωRν , (2.2.26)

{Qν ,Sν} = G−ν , [G−ν ,Q†ν ] = 2ωWν , [G−ν ,W†ν ] = 2ωQν , (2.2.27)

in addition with corresponding Hermitian conjugate relations. In this base, we have the automor-
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phism Heν → Hbν , G±ν → G±ν , Rν → −Rν , Qaν ↔ Saν .

As was for the bosinic case, one can use this structure as an approach to the study of the

super-harmonic oscillator system, whose corresponding osp(2|2) generators are

{Hos ,G± ,R ,Qa ,Sa} = {Heν ,G±ν ,Rν ,Qaν ,Saν }|ν=−1,y→ỹ , (2.2.28)

where ỹ ∈ R. The super-Hamiltonian Hos = diag(Hos +ω,Hos−ω) is a composition of two copies

of an harmonic oscillator Hamiltonian, displaced from each other. On the other hand, from the

perspective of the Darboux transformation, the seed states used to construct the fermionic operators

Qa and Sa are ψ0(ỹ) ∝ e−ỹ
2/2 and ψ0(iỹ) ∝ eỹ

2/2 respectively, see [Inzunza and Plyushchay

(2018)], and as a consequence, both resulting systems Hos and Hos − 4R0 have the exact Poincaré

supersymmetry, in contrast to the AFF case, since ψ0(iỹ)−1 ∝ ψ0(ỹ). Finally, the intertwining

operators are reduced to the usual harmonic oscillator ladder operators,

A±|ν=−1,y→ỹ = a± , B±|ν=−1,y→ỹ = −a∓ , a± =
1√
2

(
ωỹ ∓ d

dỹ

)
. (2.2.29)

A radical di�erence with the super-extended AFF model is that for the super-harmonic oscillator

system we can also build the additional operators

F± =

 a± 0

0 a±

 , Σ1 =
1

2
σ1 , Σ2 = −1

2
σ2 , (2.2.30)

that supplement the osp(2|2) superalgebra with the (anti)-commutation relations

[Hos,F±] = ±ωF± , [F∓,G±] = ∓ωF± , [F−,F+] = ωI , (2.2.31)

{Σa,Σb} = 1
2δabI , [Hos,Σa] = −iωεabΣb , [R,Σa] = iεabΣb , (2.2.32)

{Σa,Qb} = 1
2 [δab(F+ + F−)− iεab(F+ −F−)] , (2.2.33)

{Σa,Sb} = 1
2 [δab(F+ + F−) + iεab(F+ −F−)] , (2.2.34)

[F−,Qa] = ω(Σa + iεabΣb) , [F+,Qa] = −ω(Σa − iεabΣb) , (2.2.35)

[F−,Sa] = ω(Σa − iεabΣb) , [F+,Sa] = −ω(Σa + iεabΣb) , (2.2.36)

[Σa,F±] = [Σa,G±] = 0 . (2.2.37)

Again, operators (2.2.30) do not commute with Hos so in the Heisenberg picture we will have the

dynamical integrals HF± = e∓iωt,F± and HΣ± = e−iσ3ωtΣ± .

Note that generators {F±, I,Sa} produce an ideal sub-supergebra, which we identify with the

natural super-extension of Heisenberg's symmetry. In fact, the superalgebraic structure generated
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by (2.2.28), along with the Eqs. (2.2.31)-(2.2.37) is a semi-direct sum of this super-Heisenberg sym-

metry and the superalgebra osp(2|2), corresponding to an N = 2 super-extension of the Schrödinger

symmetry [Beckers and Hussin (1986); Beckers et al. (1987); Inzunza and Plyushchay (2018)] .

2.3 The zero frequency limit

In this paragraph we take the limit ω → 0 in supersymmetric generators introduced in last sec-

tion, getting new N = 2 super-extended systems. We start with the supersymmetric AFF model

generators, but now we consider the basis

D̂ν = i
4ω (G−ν − G+

ν ) , K̂ν = 1
4ω2 (Heν − G−ν − G−ν ) , Ĥν = 1

2 (Heν +Hbν)− ω2K̂ν ,(2.3.1)

ξaν = 1
2ε
ab(Qaν − Saν ) , πaν = 1

2ω ε
ab(Qaν + Saν ) , Zν = 1

2Rν . (2.3.2)

The generators de�ned in this way satisfy

[D̂ν , Ĥν ] = iĤν , [D̂ν ,Kν ] = −iK̂ν , [Ĥν , D̂ν ] = −2D̂ν , (2.3.3)

{ζaν , ζbν} = 2K̂νδab , {πaν , πbν} = 2Ĥνδab , {ζaν , ζbν} = 2D̂νδab + 2εabZν , (2.3.4)

[D̂ν , πaν ] = i
2π

a
ν , [D̂ν , ξaν ] = − i

2ξ
a
ν , [Zν , πaν ] = − i

2εabπ
b
ν , [Zν , ξaν ] = − i

2εabξ
b
ν , (2.3.5)

[Ĥν , ξaν ] = −iπaν , [K̂ν , πa] = iξaν . (2.3.6)

This is the usual way in which the superalgebra osp(2, 2) is presented for supersymmetric extensions

of the conformal model (2.1.1) at the quantum level [Leiva and Plyushchay (2003); Fedoruk et al.

(2012)]. So it is not a surprise that at the zero frequency limit we get

Ĥν |ω=0 = 1
2 (p2 + ν2

y2 )I + ν
2y2σ3 , (2.3.7)

D̂ν |ω=0 = 1
4i

(
y d
dy + d

dyy
)
I := D , K̂ν |ω=0 = y2

2 I := K , (2.3.8)

ξaν |ω=0 = y√
2
σa, , πaν |ω=0 = 1√

2

(
pσa − ν+1

y εabσb

)
, (2.3.9)

where I = diag(1, 1) and p = −i ddy .

We can repeat this procedure for the super-Schrödinger symmetry, which we have derived for

the super-harmonic oscillator system. In this case the generators

{Ĥν , D̂|ω=0, K̂|ω=0 ,Zν , ξaν |ω=0 , π
a
ν |ω=0}|ν=−1,y→ỹ = {H0,D,K,Z , ξa , πa} (2.3.10)

re�ect the superconformal symmetry of the super-extended free particle, which in turn includes the
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additional integrals Σ1 = 1
2σ1, Σ2 = − 1

2σ2 and

P =
i

2
(F+ −F+)|ω=0,y→ỹ = − i√

2

d

dỹ
I , X =

1

2ω
(F+ + F+)|ω=0,y→ỹ =

ỹ√
2
I . (2.3.11)

Together, generators {H0,D,K,X ,P , ξa , πa ,Σa} produce the super-Schrödinger symmetry, now

for the super-free particle system [Aizawa (2011); Inzunza and Plyushchay (2018)],

[D,H0] = iH0 , [D,K] = −iK , [K,H0] = 2iD , [X ,P] = 1
2 iI , (2.3.12)

[H0,X ] = −iP , [K,P] = iX , [D,P] = i
2P , [D,X ] = − i

2X , (2.3.13)

[D, πa] = i
2πa , [D, ξa] = − i

2ξa , [Z, πa] = − i
2εabπb , [Z, ξa] = − i

2εabξb , (2.3.14)

[H0, ξa] = −iπa , [K, πa] = iξa , (2.3.15)

[Z,Σa] = i
2εabΣb , [P, πa] = −iΣa , [X , ξa] = iΣa , (2.3.16)

{Σa, πb} = δabP , {Σa, ξb} = δabX , {Σa,Σb} = 1
2δabI , (2.3.17)

{πa, πb} = 2δabH0 , {ξa, ξb} = 2δabK , {πa, ξb} = 2δabD + 2εabZ . (2.3.18)

2.4 Remarks

In this chapter we have considered one-dimensional conformal and an N = 2 super-conformal

mechanical models. In the bosonic case, there are many models that share the same conformal

symmetry and some examples are the charged particle in a Dirac monopole background, Landau

problem, rational Calogero models of N particles, geodesic motion in extreme black holes, the

free particle and the harmonic oscillator in d dimensions, to name a few. In particular, some

systems in various dimensions are especially rich thanks to the presence of conformal symmetry.

Such is the case of the rational Calogero model, which is not only integrable, but also super-

integrable, see [Correa et al. (2014)] and references therein. On the other hand, higher extensions

of superconformal models are also a regular topic in scienti�c literature [Akulov and Pashnev (1983);

Fubini and Rabinovici (1984); Ivanov et al. (1989); Donets et al. (2000); Fedoruk et al. (2012)].

In Sec 2.1 we have emphasized that the models (2.1.1) and (2.1.15) represent two di�erent forms

of dynamics associated with conformal algebra. In the next chapter we will show that there is a

non-unitary mapping between both models. We call it the conformal bridge transformation, and it

might be useful to obtain hidden symmetries for higher dimensional conformal invariant models.
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Chapter 3

The conformal bridge

As we highlighted in the previous chapter, the conformal invariant systems with or without a har-

monic potential are just two di�erent dynamical phases of the same algebraic structure. However,

there seems to be no direct relationship at the eigenstate level because one of the Hamiltonians is

a non-compact generator, in contrast to the another Hamiltonian (the harmonically trapped one),

which is compact. The objective of this chapter is to show that there is a non-unitary transforma-

tion that e�ectively maps one quantum mechanical system to the other but in an unorthodox way.

To do so, let us start with algebra (2.0.1) without specifying a particular form of the generators.

Then we construct the operators

S = e−αKe
H
2α ei ln(2)D , S−1 = e−i ln(2)De−

H
2α eαK , (3.0.1)

which from now on we will call as �conformal bridge�, because by means of the Baker-Campbell-

Hausdor� formula

eABe−A = B + [A,B] +
1

2!
[A, [A,B]] + . . . , (3.0.2)

one can show that

S(H)S−1 = αJ− , S(D)S−1 = −iJ0 , S(K)S−1 = − 1
αJ+ . (3.0.3)

Here, J0 and J± correspond to the generators of the sl(2,R) algebra given in (2.0.4). Note that

the transformed generators in (3.0.3) still satisfy the so(2, 1) symmetry, i.e., the transformation is

an automorphism of the algebra.

Anyway, as we showed in the previous chapter, for the one-dimensional case H could represent

the Hamiltonian of a free particle or that of the model (2.1.1) and on the other hand, J0 could

be the Hamiltonian of an harmonic oscillator or that of the AFF model. Therefore, the conformal

bridge transformation produces a mapping between these two forms of dynamics as follows: the
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formal eigenstates of −iD are transformed into those of J0, and on the other hand, eigenstates of

H are mapped to eigenstates of the lowering operator J−, which are in turns coherent states for

J0. Of course, these statements remain true for any other higher-dimensional representation of the

generators. In the following sections we explore the scope of this transformation with examples in

one and two dimensions.

The content of this chapter is based on [Inzunza et al. (2020b)]. Here we only consider the basic

elements and important results related with quantum mechanics examples, even though construc-

tion can be extended to the classical level, as we brie�y discus in Sec. 3.4.

3.1 Free particle/ harmonic oscillator conformal bridge

Let us identify α with ω and H, K and D with the free particle conformal symmetry generators in

the Schrödinger picture (~ = m = 1),

H = −1

2

d2

dx2
:= H0 , D =

1

2i

(
d

dx
+

1

2

)
, K =

x2

2
. (3.1.1)

Then, the conformal bridge takes the form

S = exp

(
−ωx

2

2

)
exp

(
− 1

4ω

d2

dx2

)
exp

(
ln
√

2

(
x
d

dx
+

1

2

))
, (3.1.2)

besides J0 and J± are the symmetry generators of the harmonic oscillator,

2ωJ0 =
1

2

(
− d2

dx2
+ ω2x2

)
:= Hos , 2ωJ± = −(a±)2 , a± =

1√
2

(
ωx∓ d

dx

)
. (3.1.3)

As we saw in the previous chapter, these operators are well de�ned for x ∈ R, and there are many

more symmetries for these systems. In the case of the free particle we have the momentum operator

p = −i ddx and the Galilean boost, which in the Schrödinger picture at t = 0 is just x. These objects

are connected with the Heisenberg generators a±, appearing in (3.1.3), via the conformal bridge as

follow

S(x)S−1 =
1

ω
a+ , S(p)S−1 = −ia− , (3.1.4)

and, therefore, the transformation is also an automorphism of the Schrödinger symmetry.

For the sake of simplicity, we set ω = 1 along the rest of this chapter.

The relation (the inverse Weierstrass transformation of a monomial)

e−
1
4
d2

dx2 xn = 2−nHn(x) , (3.1.5)
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where Hn(x) are the Hermite polynomials, implies that

ψn(x) =
1√

π1/2n!
Hn(x)e−

x2

2 = (2π)
1
4

√
2nn! S

(
x√
2

)n
, (3.1.6)

which are the eigenstates of Hos with eigenvalues En = ω(n+ 1
2 ).

With the exception of 1 and x, which are annihilated by H0, the functions xn are not solutions

of the free particle Schrödinger equation. They are in fact the rank n Jordan states of the zero

energy, as the relations

(H)jx2l =
(
− 1

2

)2l (2l)!(2l−1)!
(2l−j)!(2l−1−j)!x

2(l−j) , (3.1.7)

(H)jx2l+1 =
(
− 1

2

)2l+1 (2l)!(2l+1)!
(2l−j+1)!(2l−j)!x

2(l−j)+1 , (3.1.8)

valid for j = 0, . . . , l, show us. If we set j = l in these formulas, a subsequent application of H

from the left produces 0 on the right hand side of the equation, and for this reason the nonlocal

operator in (3.1.5) produces a polynomial of order n. Also these Jordan states satisfy the equation

2iDxn = (n+ 1/2)xn, so it is not really a surprise that after applying S, one obtains the harmonic

oscillator eigenstates.

Now let us put our attention to the plane waves. We know that the functions ei
κ√
2
x are eigen-

states of the free particle with energy E = κ2, then the application of S produces

Se
i κ√

2
x

= 2
1
4 exp

(
−x

2

2
+
κ2

4
+ iκx

)
= (2π)

1
4

∞∑
n=0

√
2n

n!
(ik)nψn(x) := ψCS(x, κ) . (3.1.9)

These funtions are eigenstates of a− and (a−)2, and up to a normalization factor, they are coherent

states of Hos, [Schrödinger (1926); Klauder and Skagerstam (1985); Gazeau (2009)]. In fact, by

applying the evolution operator U = eiHost one gets ψCS(x, κ, t) = e
it
2 ψCS(x, κeit) which is a

solution of the harmonic oscillator time-dependent Schrödinger equation. To obtain the over-

complete set of coherent states, an analytical continuation in κ must be done, allowing complex

values.

From these results one can formulate a general recipe:

� Under the conformal bridge transformation, the formal states of the operator 2iD, that are

also the rank n Jordan state of zero energy, are mapped to normalizable eigenstates of J0.

� Eigenstates of the HamiltonianH are transformed into coherent states of the system J0, which

are eigenstates of J− and conserve their form with time evolution. To have the overcomplete

set, negative energy solutions (complex κ) should be also considered in this map.

� The conformal bridge also serves to map other symmetries from one system to another, as

was the case for generators of the Heisenberg algebra (3.1.4).
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In [Inzunza et al. (2020b)], it is shown how to obtain the squeezed states by applying the

conformal bridge to Gaussian packets, and there is also an interesting discussion about the relation

of this transformation and the Stone-von Newman theorem [Takhtadzhian (2008)]. Nevertheless,

we prefer to not dwell with these details here.

3.2 Conformal bridge and the AFF model

Let us now set up H as the Hamiltonian operator of the two-body Calogero model with omitted

center of mass degree of freedom

H =
1

2

(
− d2

dx2
+
ν(ν + 1)

x2

)
:= Hν , (3.2.1)

besides D and K take the same form given in (3.1.1). With this choice, the conformal bridge is

also labeled by ν,

Sν = exp

(
−x

2

2

)
exp

(
1

4

(
− d2

dx2
+
ν(ν + 1)

x2

))
exp

(
ln
√

2

(
x
d

dx
+

1

2

))
, (3.2.2)

and operators J0, J± are now

2ωJ0 =
1

2

(
− d2

dx2
+
ν(ν + 1)

x2
+ x2

)
:= Hν , 2ωJ± = −(a±)2 +

ν(ν + 1)

2x2
:= C±ν . (3.2.3)

Following the recipe described above, we look for the zero energy solutions and its Jordan

states, then consider the set of functions xν+1+2n, n = 0, 1, . . .. The function with n = 0 represents

a formal, diverging at in�nity, eigenstate of the di�erential operator Hν with ν ≥ −1/2 of eigenvalue

E = 0. For n ≥ 1 this functions are the Jordan states of rank n corresponding to the same eigenvalue

of Hν . The functions xν+1+2n are at the same time eigenstates of the operator 2iD with eigenvalues

ν + 2n+ 3/2. The Jordan states with n ≥ 1 satisfy the relations

(Hν)jxν+1+2n =
(−2)jΓ(n+ 1)

Γ(n+ 1− j)
Γ(n+ ν + 3/2)

Γ(n+ ν + 3/2− j)
xν+1+2(n−j) , j = 0, 1, . . . , n , (3.2.4)

which can be proved by induction. Eq. (3.2.4) extends to the case j = n+1 giving (Hν)n+1xν+1+2n =

0 due to appearing of a simple pole in the denominator.

Using relation (3.2.4) one can compute the conformal bridge transformation in functions x2n+ν+1,

which gives

Sν

(
x√
2

)ν+1+2n

= 2
−1
4 (−1)n

√
n!Γ(n+ ν + 3/2) ψν,n(x) , (3.2.5)

where eigenstates ψν,n(x) correspond to (2.1.26) (with ω = 1 and y = x).

33



On the other hand, application of the operator Sν to the eigenstates (2.1.12) (with x = q) of

the system Hν gives

Sνψκ,ν( 1√
2
x) = 2

1
4 e−

1
2x

2+ 1
4κ

2√
xJν+1/2(κx) := φν(x, κ) . (3.2.6)

These are the coherent states of the AFF model [Perelomov (2012)], which satisfy

J−φν(x, κ) = −1

4
κ2φν(x, κ) . (3.2.7)

By allowing the κ > 0 to become a complex parameter z, coherent states can be constructed with

complex eigenvalues of the operator J−. Application of the evolution operator e−itHν to these

states gives the time-dependent coherent states

φν(x, z, t) = 21/4
√
xJν+1/2(z(t)x)e−x

2/2+z2(t)/4−it , (3.2.8)

where z(t) = ze−it. In the case of ν = 0, these time-dependent coherent states of the AFF model

are the odd Schrödinger cat states of the quantum harmonic oscillator [Dodonov et al. (1974)],

φ0(x, z, t) ∝ e− x
2

2 +
z2(t)

4 − it2 sin(z(t)x) . (3.2.9)

3.3 The conformal bridge and Landau problem

The generalization of the conformal bridge between free particle and harmonic oscillator to the

d−dimensional case is straightforward; since the problem is separable in Cartesian coordinates,

the conformal bridge operator is just S(r) = S(x1) . . .S(xd). Each S(xi) touch only the objects

constructed in terms of xi and pi = − d
dxi

, leaving invariant the other coordinates. On the other

hand, as both systems posses the so(d) symmetry, the generalized angular momentum tensorMij =

xipj − xjpi remains intact after the similarity transformation.

On the other hand, a nontrivial relation between two-dimensional free particle, whose conformal

symmetry generators are

H =
1

2
(p2
x + p2

y) , D =
1

2
(xpx + ypy + 1) , K =

1

2
(x2 + y2) , (3.3.1)

and the Landau problem in the symmetric gauge, can be established by means of the two-dimensional

conformal bridge operator

S(x, y) = S(x)S(y) , (3.3.2)

with S(x) and S(y) of the form (3.1.2). This is the subject of this section.
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Consider now the Landau problem for a scalar particle on R2. In the symmetric gauge ~A =

1
2B(−q2, q1), the Hamiltonian operator (in units c = m = ~ = 1) is given by

HL =
1

2
~Π2, Πj = −i ∂

∂qj
− eAj , [Π1,Π2] = ieB . (3.3.3)

Assuming ωc = eB > 0, this operator can be factorized as

HL = ωc(A+A− + 1
2 ) , (3.3.4)

A± = 1√
2ωc

(Π1 ∓ iΠ2) , [A−,A+] = 1 . (3.3.5)

Setting ωc = 2, we can identify qi with dimensionless variables q1 = x, q2 = y. Then we present

A± as linear combinations of the usually de�ned ladder operators a±x and a±y (the shape of which

corresponds to the third equation in (3.1.3)), in terms of which we also de�ne the operators B±,

A± =
1√
2

(a±y ± ia±x ) , B± =
1√
2

(a±y ∓ ia±x ) . (3.3.6)

The operators B± satisfy relation [B−,B+] = 1, and commute with A±. They are integrals of

motion, and their non-commuting Hermitian linear combinations B+ + B− and i(B+ − B−) are

identi�ed with the coordinates of the center of the cyclotron motion. In terms of the ladder

operators a±x , a
±
y the Hamiltonian HL takes the form of a linear combination of the Hamiltonian

of the isotropic oscillator Hiso and angular momentum operator M ,

HL = Hiso −M , Hiso = a+
x a
−
x + a+

y a
−
y + 1 , M = xpx − ypy = −i(a+

x a
−
y − a+

y a
−
y ) . (3.3.7)

On the other hand, Hiso and M are presented in terms of A± and B± as follows,

M = B+B− −A+A− , Hiso = B+B− +A+A− + 1 , (3.3.8)

and we have the commutation relations [M,B±] = ±B±, [M,A±] = ∓A±. By taking into ac-

count the invariance of the angular momentum under similarity transformation, we �nd that its

linear combination with the dilatation operator is transformed into the Hamiltonian of the Landau

problem,

S(x, y)(2iD −M)S−1(x, y) = HL . (3.3.9)

Let us now introduce complex coordinate in the plane,

w =
1√
2

(y + ix) , and w̄ =
1√
2

(y − ix) . (3.3.10)
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The elements of conformal algebra and angular momentum operator take then the form

H = − ∂2

∂w∂w̄
, D =

1

2i

(
w
∂

∂w
+ w̄

∂

∂w̄
+ 1

)
, K = ww̄ , M = w̄

∂

∂w̄
− w ∂

∂w
, (3.3.11)

and we �nd that the operator (3.3.2) generates the similarity transformations

S(x, y)wS−1(x, y) = A+ , S(x, y)
(
∂
∂w

)
S−1(x, y) = A− , (3.3.12)

S(x, y)w̄S−1(x, y) = B+ , S(x, y)
(
∂
∂w̄

)
S−1(x, y) = B− , (3.3.13)

S(x, y)
(
w ∂
∂w

)
S−1(x, y) = A+A− , S(x, y)

(
w̄ ∂
∂w̄

)
S−1(x, y) = B+B− . (3.3.14)

Observe that each pair of relations in (3.3.12) and (3.3.13) has a form similar as the one-dimensional

transformation (3.1.4), where, however, the coordinate and momentum are Hermitian operators.

Simultaneous eigenstates of the operators w ∂
∂w and w̄ ∂

∂w̄ , which satisfy the relations w
∂
∂wφn,m =

nφn,m and w̄ ∂
∂w̄φn,m = mφn,m with n,m = 0, 1, . . ., are

φn,m(x, y) = wn(w̄)m = 2−(n+m)/2
n∑
k=0

m∑
l=0

(
n

k

)(
m

l

)
(i)n−m+l−kyk+lxn+m−k−l , (3.3.15)

where the binomial theorem has been used. Employing Eq. (3.3.11) we �nd that

Mφn,m = (m− n)φn,m , 2iDφn,m = (n+m+ 1)φn,m , (3.3.16)

Kφn,m = φn+1,m+1 , Hφn,m = −nmφn−1,m−1 . (3.3.17)

The last equality shows that φ0,m and φn,0 are the zero energy eigenstates of the two-dimensional

free particle, while the φn,m with n,m > 0 are the Jordan states corresponding to the same zero

energy value. Application of the operator S(x, y) to these functions yields

S(x, y)φn,m(x, y) = 22(n+m)+ 1
2 e−

(x2+y2)
2 Hn,m(y, x) = ψn,m(x, y) , (3.3.18)

where

Hn,m(y, x) = 2−(n+m)
n∑
k=0

m∑
l=0

(
n

k

)(
m

l

)
(i)n−m+l−kHk+l(y)Hn+m−k−l(x) , (3.3.19)

are the complex Hermite polynomials, see [Ghanmi (2012)]. These functions are eigenstates of the

operators HL, M and Hiso,

HLψn,m = (n+ 1
2 )ψn,m , Mψn,m = (m− n)ψn,m , (3.3.20)

Hisoψn,m = (n+m+ 1)ψn,m , (3.3.21)
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and we note that ψn,n is rotational invariant.

Eqs. (3.3.12), (3.3.13), and (3.3.17) show that the operators A± and B± act as the ladder

operators for the indexes n and m, respectively, while the operators Ĵ± = − 1
2 ((a±x )2 + (a±y )2),

increase or decrease simultaneously n and m by one.

Application of the operator S(x, y) to exponential functions of the most general form eαw+βw̄

with α, β ∈ C gives here, similarly to the one-dimensional case, the coherent states of the Landau

problem as well of the isotropic harmonic oscillator,

ψL(x, y, α, β) = S(x, y)e
1√
2

((α+β)y+i(α−β)x)
=
√

2e−
(x2+y2)

2 +(α+β)y+i(α−β)x−αβ

=
∑∞
n=0

∑n
l=0

1
n!

(
n
l

)
αlβn−lψl,n−l(x, y) .

(3.3.22)

Applying to them, in particular, the evolution operator e−itHL , we obtain the time dependent

solution to the Landau problem,

ψL(x, y, α, β, t) = e−
it
2 ψL(x, y, αe−it, β) , (3.3.23)

whereas under rotations these states transform as

eiϕMψL(x, y, α, β) = ψL(x, y, αe−iϕ, βeiϕ) . (3.3.24)

As the function eαw+βw̄ is a common eigenstate of the di�erential operators ∂
∂w and ∂

∂w̄ with

eigenvalues α and β, respectively, then our transformation yields

A−ψL(x, y, α, β) = αψL(x, y, α, β) , B−ψL(x, y, α, β) = βψL(x, y, α, β) , (3.3.25)

that provides another explanation why the wave functions (3.3.22) are the coherent states for the

planar harmonic oscillator as well as for the Landau problem.

3.4 Remarks

Note that if we apply S from the right to the equations in (3.0.3), we get intertwining relations of

the form

SH = αJ−S , SD = −iJ0S , SK = − 1
αJ+S , (3.4.1)

which are very similar to the usual intertwining relations of the supersymmetric quantum mechanics,

however, here the �intertwining operators� are nonlocal and non-unitary operators described by an

in�nite series of powers of second derivatives. This is the reason why non-normalizable functions
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are mapped to bound states and vice-versa.

One can go further and try to obtain a classical version of the conformal bridge by using

�Hamiltonian �ows� of the form

f(α) = exp(αF ) ? f := f +

∞∑
n=1

αn

n!
{F, {. . . , {F, f } . . .}}︸ ︷︷ ︸

n

=: TF (α)(f) . (3.4.2)

where F represents a symmetry generator, α is a transformation parameter and f = f(q, p) corre-

sponds to a function on phase space. The composed transformation

Tβαγ := TK(β) ◦ TH0
(α) ◦ TD(γ) = TK(β) ◦ TD(γ) ◦ TH0

(2α) , (3.4.3)

with the election

α =
i

2
, β = −i , γ = − ln 2 , (3.4.4)

is the classical analog, the operator (3.0.1) (generators should be �xed at t = 0). This is a complex

canonical transformation, so one should expect that there is some relation with PT symmetry

[Dorey et al. (2001); Bender (2007); El-Ganainy et al. (2018)]. Actually, in the case of the classical

bridge between free particle and harmonic oscillator, the function TiD(τ)(x), i.e, the �imaginary�

�ux of x due to D, is the one that is mapped to a complex combination of position and momentum

of the harmonic oscillator. Besides, the transformation of the free particle trajectory does not have

a clear interpretation.

Finally it is worth emphasizing that Hamiltonians of the form xp have found application in

mathematics, namely, in the study of Riemann hypothesis, see [Connes (1999); Berry and Keating

(1999); Regniers and Van der Jeugt (2010); Sierra and Rodriguez-Laguna (2011); Bender et al.

(2017)].
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Chapter 4

Hidden bosonized superconformal

symmetry

It is well known that the one-dimensional quantum harmonic oscillator system is characterized by

a bosonized superconformal symmetry [de Crombrugghe and Rittenberg (1983); Balantekin et al.

(1988); Cariñena and Plyushchay (2016a); Bonezzi et al. (2017)], however, the origin of this sym-

metry had not been clari�ed, until the article [Inzunza and Plyushchay (2018)] appeared, and this

chapters summarize the main results of that work. We show that this supersymmetry can be de-

rived by applying a nonlocal transformation (of the nature of a Foldy-Wouthuysen transformation)

to a particular super-extended system. The latter system itself can not be obtained directly from

a given superpotential, i.e., is outside of the Darboux transformation scheme, however its corre-

sponding generators are, in fact, linear combinations of the osp(2|2) symmetry generators that the

super-harmonic oscillator system possesses. They were introduced in Chap 2, Sec. 2.2. The men-

tioned system can also be obtained by taking a certain limit in an isospectral deformation of the

harmonic oscillator, produced with a con�uent Darboux transformation.

4.1 Dimensionless generators

So far we have turned our attention to Hamiltonian operators of the form

H =
1

2

(
− d2

dy2
+ V (y)

)
, [y] =

√
t , (4.1.1)

where V (y) is the potential of the harmonic oscillator or that of the AFF model. However, when

we are working with the DCKA transformation, it is worth using dimensionless operators. For this

reason, we consider the change of variables x =
√
ωy, in term of which the Hamiltonian (4.1.1)

takes the form H = ω
2L, where depending on the situation we are looking at, the operator L as
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well as its eigenstates and its spectrum could be

Los = − d2

dx2
+ x2 , ψn(x) =

Hn(x)e−
x2

2

√
π1/2n!

, En = 2n+ 1 , (4.1.2)

or

Lν = − d2

dx2 + x2 + ν(ν+1)
x2 , (4.1.3)

ψν,n(x) =
√

2n!
Γ(n+ν+ 3

2 )
xν+1L

(ν+ 1
2 )

n (x2)e−
x2

2 , Eν,n = 4n+ 2ν + 3 . (4.1.4)

It is also convenient to rede�ne the �rst order ladder operators of the harmonic oscillator as

a± = ∓ d

dx
+ x, [a+, a−] = 2 , [Los, a

±] = ±2a± . (4.1.5)

and the same for the second order ladder operators of the AFF system which are now given by

C±ν = −(a±)2 + ν(ν+1)
x2 , (4.1.6)

[Lν , C±ν ] = ±∆EC±ν , [C−ν , C+
ν ] = 8Lν , ∆E = 4 . (4.1.7)

In the Heisenberg picture operators a± and C±ν are respectively replaced by Ha
± = e∓2ita± and

HC± = e∓4itC±, which will be dynamical integrals of motion for the corresponding systems.

4.2 Hidden superconformal symmetry of the quantum har-

monic oscillator

In this paragraph we show how the aforementioned superconformal symmetry appears for the one-

dimensional bosonic harmonic oscillator system, the Hamiltonian of which is given by (4.1.2).

As the ladder operators (4.1.5) anticommute with re�ection operator R de�ned by R2 = 1,

Rx = −xR, and their anti-commutator produces {a+, a−} = 2Los, it is clear that if one set R as

the Z2-grading operator, then:

� a± are identi�ed as odd, fermionic generators,

� Los and quadratic operators (a±)2 are identi�ed as even, bosonic generators since [R, Los] =

[R, (a±)2] = 0.

Consider now the dynamical integrals of motion

J0 =
1

4
Los, J± =

1

4
e∓4it(a±)2 , α± =

1

4
e∓i2ta± . (4.2.1)
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They produce the (anti)commutator relations

[J0, J±] = ±J±, [J−, J+] = 2J0 , (4.2.2)

{α+, α−} = 1
2J0 , {α±, α±} = 1

2J± , (4.2.3)

[J0, α±] = ± 1
2α±, [J±, α∓] = ∓α± . (4.2.4)

The superalgebra (4.2.2), (4.2.3), (4.2.4) describes the hidden superconformal osp(1|2) symmetry of

the quantum harmonic oscillator [de Crombrugghe and Rittenberg (1983); Balantekin et al. (1988)].

The set of even integrals J0, J± generates the sl(2,R) subalgebra (4.2.2), and relations (4.2.4) mean

that fermionic generators α± form a spin-1/2 representation of this Lie subalgebra. One can extend

this superalgebra by introducing the fermionic operators

β± = iRα± . (4.2.5)

which give rise to the additional super-algebraic relations

[J0, β±] = ± 1
2β± , [J±, β∓] = ∓β± , (4.2.6)

{β±, β±} = 1
2J± , {β+, β−} = 1

2J0 , {α±, β∓} = ∓ i
2Z , (4.2.7)

[Z,α±] = i
2β± , [Z, β±] = − i

2α± , (4.2.8)

where

Z = −1

4
R . (4.2.9)

However this extension is nonlocal since R can be presented as R = sin
(
π
2Los

)
.

We will show soon that superalgebra given by Eqs. (4.2.2)-(4.2.4) and (4.2.6)-(4.2.8) is just

another basis for the osp(2|2) superconformal algebra presented in Chap. 2, Sec 2.2.

4.3 Extended system with super-Schrödinger symmetry and

nonlocal Foldy-Wouthuysen transformation

The approach with nonlocal Foldy-Wouthuysen transformation and a subsequent reduction was

used to clarify the origin of the hidden bosonized supersymmetry (that is outside the conformal

symmetry) in [Gamboa et al. (1999); Jakubsk�y et al. (2010)], and in this section we demonstrate

that the bosonized superconformal symmetry introduced above can be �extracted� from the sym-

metry generators of the extended quantum harmonic oscillator system described by the matrix
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Hamiltonian

H =

 Los 0

0 Los

 . (4.3.1)

It is natural to identify the diagonal matrix Γ = σ3 as a Z2-grading operator, implying that Hamilto-

nian (4.3.1) is an even generator, besides the anti-diagonal integrals σa, a = 1, 2, can be considered

as odd supercharges. The peculiarity of the system (4.3.1) is that these supercharges anticommute

not for Hamiltonian but for central element, {σa, σb} = 2δabI, I = diag (1, 1). On the other hand,

all the energy levels of the extended system H (including the lowest E0 = 1 > 0) are doubly degen-

erate. Furthermore, neither the supercharges nor the Hamiltonian can annihilate any eigenstate or

linear combination of them, so the system is in the spontaneously broken supersymmetric phase.

Additionally, one can also construct the dynamical integrals

J± = 1
4e
∓i4t

 (a±)2 0

0 (a±)2

 =

 J± 0

0 J±

 , (4.3.2)

F± = 1
4e
∓i2t

 a± 0

0 a±

 =

 α± 0

0 α±

 , (4.3.3)

Q± = 1
4e
∓i2t

 0 a±

a± 0

 =

 0 α±

α± 0

 , S± = iσ3Q±. (4.3.4)

Diagonal operators J± and F± are identi�ed here as even generators, and antidiagonal dynamical

integrals Q± and S± are odd. All these generators produce the superalgebra :

[J0,J±] = ±J± , [J−,J+] = 2J0 , (4.3.5)

[J0,F±] = ± 1
2F± , [J±,F∓] = ∓F± , [F−,F+] = 1

2I , (4.3.6)

[J0,Q±] = ± 1
2Q± , [J0,S±] = ± 1

2S± , [J±,Q∓] = ∓Q± , [J±,S∓] = ∓S± , (4.3.7)

{Σa,Σb} = 2δab I , {Σ1,Q±} = F± , {Σ2,S±} = F± , (4.3.8)

{Q±,Q±} = 1
2J± , {Q+,Q−} = 1

2J0 , {S±,S±} = 1
2J± , {S+,S−} = 1

2J0 , (4.3.9)

{Q+,S−} = − i
2Z , {Q−,S+} = i

2Z , (4.3.10)

[Z,Σa] = i
2εabΣb , [Z,Q±] = i

2S± , [Z,S±] = − i
2Q± , (4.3.11)

[F±,Q∓] = ∓ 1
4Σ1, [F±,S∓] = ∓ 1

4Σ2 , (4.3.12)

where

J0 = 1
4H =

 J0 0

0 J0

 , (4.3.13)

Σ1 = 1
2σ1 , Σ2 = − 1

2σ2 , Z = − 1
4σ3 , I = 1

4 I . (4.3.14)
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The not shown (anti)commutators between generators are equal to zero. The system presented here

cannot be obtained by the usual Darboux transformation procedure, since it is not possible to �nd

a superpotential, so that the potentials relative to the superpartners are exactly x2, see [Inzunza

and Plyushchay (2018)]. However, when considering the base change

Hos = 2(J0 −Z) , G± = −2J± , (4.3.15)

Q1 = 2
√

2 (Re(Q−) + Im(S−)) , Q2 = 2
√

2 (Re(S−)− Im(Q−)) , (4.3.16)

S1 = 2
√

2 (Re(Q−)− Im(S−)) , S2 = 2
√

2 (Re(S−) + Im(Q−)) , (4.3.17)

and identifying 2Z with the generator of the R symmetry, one realizes that the generators de�ned

in this way satisfy the osp(2|2) superconformal algebra (2.2.16)-(2.2.22). Actually, the generators

(4.3.16) - (4.3.17) match with Qa and Sa in (2.2.28) when t = 01, and in addition, the opera-

tors Σa and F± are, up to a proportionality factor, the generators of Heisenberg's superextended

symmetry. With this information at hand we identify (4.3.5)-(4.3.12) as another expression for

super-Schrödinger symmetry.

By comparing with what we have in the previous section, it is obvious that the matrix integrals

J0, J±, Z, Q±, S± of the extended system (4.3.1) are analogous to the corresponding integrals J0,

J±, Z, α±, β± of the quantum harmonic oscillator. Because of the extension, the nonlocal integrals

Z and β± of the system (4.1.2) are changed here for the corresponding local matrix integrals Z and

S±. The anti-commutator of additional fermionic integrals Σa with Σb generates a central charge

I, and via the anti-commutators with odd dynamical integrals Q± and S± they produce additional

bosonic integrals F±, see Eq. (4.3.8).

The comparison of the symmetries and generators of the systems (4.3.1) and (4.1.2) indicates

that the local osp(1|2) and nonlocal osp(2|2) hidden superconformal symmetries of the quantum

harmonic oscillator can be obtained by a certain projection (reduction) of the local symmetries

of the matrix system (4.3.1). To �nd the exact relation between these two systems and their

symmetries, we apply to the extended system a unitary transformation O 7→ Õ = UOU† generated

by the nonlocal matrix operator

U = U† = U−1 =
1

2

 1 +R 1−R

1−R 1 +R

 . (4.3.18)

Under this transformation, the central element I and generators of the sl(2,R) subalgebra, J0 and

1putting ω = 1 and therefore y = x.
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J±, do not change, while other generators take the following form :

Z̃ =
1

4

 −R 0

0 R

 , (4.3.19)

Q̃± =

 α± 0

0 α±

 , S̃± =

 iRα± 0

0 −iRα±

 =

 β± 0

0 −β±

 , (4.3.20)

Σ̃1 =
1

2
σ1 , Σ̃2 = −1

2
σ2R , F̃± = σ1α± . (4.3.21)

Note that the transformation diagonalizes the dynamical odd integrals Q± and S± which ini-

tially have had the anti-diagonal form. Therefore, the transformation is of the same nature as a

Foldy-Wouthuysen transformation for a Dirac particle in external electromagnetic �eld [Foldy and

Wouthuysen (1950)]. On the other hand, the transformed even, Z̃, and odd, S̃±, generators of the

super-extended Schrödinger symmetry of the system (4.3.1) take a nonlocal form. We can reduce

(or, in other words, project) the transformed system and its symmetries to the proper subspace

of eigenvalue +1 of the matrix σ3 which corresponds, according to Eq. (4.3.13), to the single

(non-extended) quantum harmonic oscillator system. In this procedure (which can be done using

projector Π+ = 1
2 (1 + σ3)) we looses operators F̃± and Σ̃b because they are anti-diagonal, but on

the other hand, we retrieve all the generators of the bosonized superconformal symmetry given in

the previous section.

4.4 Two-step isospectral Darboux chain

As we have indicated previously, the extended system (4.3.1) cannot be produced by means of the

usual supersymmetric algorithm based on some superpotential W (x). In this section we will show

that an option to generate this system is through a two-step con�uent Darboux transformation:

The extended system obtained in this way will have a set of true and dynamical integrals of motion,

and after the application of a certain limit, these integrals will give us the generators of the super-

extended Schrödinger symmetry related to (4.3.1).

Consider the functions ψ0(x), which is the normalized ground state of (4.1.2), and χ0(x), given

by

χ0(x;µ) = µψ̃0(x) + Ω0 , (4.4.1)

where Ω0 is a Jordan state of energy E = 1, whose form corresponds to (1.3.3), and µ is a real

constant. By construction χ0 satisfy H2
−χ0 = 0 with H− = a+a− = Los− 1, and the application of
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a− on it gives us

ϕ−0(x;µ) = a−χ0(x;µ) =
µ+ I0(x)

ψ0(x)
= µψ−0(x) + ψ̃−0(x) , I0(x) =

∫ x

−∞
(ψ0(t))2dt , (4.4.2)

where ψ−0(x) = ex
2/2 is a nonphysical eigenstate of Los with negative energy E = −1 and ψ̃−0(x)

is its corresponding linear independent partner constructed according to (1.1.7).

If we choose the value of parameter µ in one of the in�nite intervals (−∞,−1) or (0,∞) for which

ϕ−0(x;µ) is a nodeless on a real line function being a nonphysical eigenstate of H+ = a−a+ of zero

eigenvalue, H+ϕ−0(x;µ) = 0, then we can use it as a seed state for a new Darboux transformation

which produces the �rst order di�erential operators

A−µ = ϕ−0(x;µ)
d

dx

1

ϕ−0(x;µ)
=

d

dx
+W (x;µ) , A+

µ = (A−µ )† , (4.4.3)

where

W (x;µ) = −(lnϕ−0(x;µ))′ = −x− ψ0(x)

ϕ−0(x;µ)
. (4.4.4)

These operators factorize H+ and

Hµ = H+ + 2W ′ = H− − 2 (ln(I0(x) + µ))
′′
, (4.4.5)

A+
µA
−
µ = H+, A−µA

+
µ = Hµ, and intertwine them, A−µH+ = HµA

−
µ , A

+
µHµ = H+A

+
µ . Considering

the second order di�erential operators given by a composition of the �rst order Darboux generators,

A−µ = A−µ a
− , A+

µ = a+A+
µ , (4.4.6)

we �nd that they intertwine the Hamiltonian operators H− and Hµ,

A−µH− = HµA−µ , A+
µHµ = H−A+

µ , (4.4.7)

and also satisfy relations A+
µA−µ = (H−)2, A−µA+

µ = (Hµ)2. By construction,

ker (A−µ ) = span {ψ0(x), χ0(x;µ)} . (4.4.8)

The Darboux-deformed oscillator system described by the Hamiltonian operator Hµ is completely

isospectral to the system H−. Its eigenstates with eigenvalues E = 2n, n = 1, 2 . . ., are obtained by

the mapping A−µ : ψn(x) 7→ ψn(x;µ) = A−µψn(x), Hµψn(x;µ) = 2nψn(x;µ). The (not normalized)

ground state of zero energy of the system Hµ is described by wave function ψ0(x;µ) = 1
ϕ−0(x;µ) ,

where ϕ−0(x;µ) corresponds to (4.4.2).
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Thus, we obtained the completely isospectral pair H− and Hµ, from which we compose the

extended system described by the matrix Hamiltonian operator

Hµ =

 Hµ 0

0 H−

 . (4.4.9)

On the other hand, A−µ and A+
µ intertwine H+ = H− + 2 and Hµ, which implies

A−µH− = (Hµ − 2)A−µ , A+
µ (Hµ − 2) = H−A

+
µ . (4.4.10)

For this system we have in fact three Darboux schemes :

� Scheme (ψ0(x), χ0(x;µ)) which provides us with the intertwining operator A±µ .

� Scheme (ϕ−0(x;µ)), the intertwining operators of which are A±µ .

� Scheme (ψ0(x), ψ1(x), a+χ0(x;µ)), which gives us the third order intertwining operatorsA−µ =

A−µ (a−)2 = A−µ a− and A+
µ = (A−µ )†, that satisfy A−µH− = (Hµ+2)A−µ , A+

µ (Hµ+2) = H−A+
µ .

Using the intertwining operators of these three Darboux schemes, we construct the odd integrals

Qµ1 =

 0 A−µ
A+
µ 0

 , Qµ2 = iσ3Qµ1 , Sµ1 =

 0 A−µ

A+
µ 0

 , Sµ2 = iσ3Sµ1 , (4.4.11)

Lµ1 =

 0 A−µ
A+
µ 0

 , Lµ2 = iσ3Lµ1 . (4.4.12)

and by means of the relations

A−µA+
µ = A−µ a

−A+
µ , A+

µA−µ = (H− + 2)a− , (4.4.13)

A−µA+
µ = A−µ (a−)A+

µ , A+
µA−µ = (H− + 2)(a−)2 , (4.4.14)

we also construct diagonal (even) operators

Fµ− =

 A−µ a
−A+

µ 0

0 (H− + 2)a−

 , Jµ− =

 A−µ (a−)2A+
µ 0

0 (H− + 2)(a−)2

 , (4.4.15)

and Hermitian conjugate operators Fµ+ and Jµ+. With respect to the Hamiltonian Hµ, the only

pair of time-independent integrals are the superchargesQµa, a = 1, 2. To obtain dynamical integrals

one should unitary transform other operators with U(t) = exp (iHµt) .

The generators considered here produce a kind of a nonlinear deformation of the super-Schrödinger

symmetry. We are not interested here in explicit form of such a nonlinear superalgebra, but just
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note that when µ → ±∞, we have (ln(I(x) + µ))′ → 0. As a result, in any of the two limits

the Hamiltonian Hµ transforms into H−, and the matrix Hamiltonian transforms into extended

Hamiltonian (4.3.1) shifted for the minus unit matrix : Hµ → H − I. In this limit we also have

A±µ → −a∓, and �nd that the constructed operators transform as follows :

Qµ1 → −(H− 1)σ1 , Qµ2 → (H− 1)σ2 , (4.4.16)

Sµa → −S̆a , Lµa → −(H− 2 + σ3)Q̂a , (4.4.17)

Fµ− → (H− σ3)F− , Fµ+ → F+(H− σ3) , (4.4.18)

Jµ− → (H− σ3)J− , Jµ+ → J+(H− σ3) . (4.4.19)

In such a way we reproduce all the corresponding integrals of the system (4.3.1) that generate the

super-extended Schrödinger symmetry lying behind the hidden superconformal symmetries osp(1|2)

and osp(2|2) of a single quantum harmonic oscillator.

The isospectral deformation Vµ(x) of the harmonic oscillator potential is illustrated by Figure

4.1, while Figure 4.2 illustrates the action of the intertwining operators A±µ and A±µ .
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Figure 4.1: On the left: Isospectrally deformed potential Vµ at µ = 1 and µ = −3 is shown by continuous
red and dashed black lines, respectively. On the right: The di�erence Vµ(x) − x2 given by the last term
in Eq. (4.4.5) is shown for the same values µ = 1 and µ = −3. With increasing value of modulus of the
deformation parameter µ the amplitudes of minimum and maximum of the di�erence Vµ(x)− x2 decrease,
and in both limits µ → ±∞ the deformed potential Vµ(x) transforms into harmonic potential V = x2

shown on the left by continuous blue line.

In conclusion of this section we note that the Hamiltonian (4.4.9) and the second order inter-

twining operators A±µ can be presented in alternative form which corresponds to the anomaly-free

scheme of quantization of classical systems with second-order supersymmetry [Plyushchay (2017)].

For this we introduce the quasi-amplitude [Brezhnev (2008)]

Ξ(x) =
√
ψ−0(x)ϕ−0(x;µ) . (4.4.20)

It is a square root of the product of two nonphysical eigenstates of eigenvalue −1 of the quantum

harmonic oscillator Los. The rescaled function Ξ(x)/
√
µ transforms in the limit µ → ±∞ into
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Figure 4.2: Mapping of eigenstates of the systems H− and Hµ by intertwining operators A±µ and A±µ
via eigenstates of intermediate system H+. The ground state A−µ ψ̃0 of Hµ is obtained by applying A−µ to

nonphysical eigenstate ψ̃0 of H−. It also can be generated by a not shown here action of A−µ on nonphysical

eigenstate ψ̃1 of H− via nonphysical eigenstate ψ−0 of H+.

the nonphysical eigenstate ψ−0. This function satis�es Ermakov-Pinney equation [Ermakov (1880);

Milne (1930); Pinney (1950); Cariñena and De Lucas (2011)]

− Ξ′′ + (x2 + 1)Ξ =
1

4Ξ3
. (4.4.21)

In terms of quasi-amplitude, the �rst order di�erential operators

A−Ξ = Ξ(x)
d

dx

1

Ξ(x)
=

d

dx
− x−W(x) , A+

Ξ = (AΞ)† , (4.4.22)

can be de�ned, where

W(x) =
1

2Ξ2(x)
=

1

2
(ln(I0(x) + µ))

′
. (4.4.23)

Then the Hamiltonian Hµ and the intertwining operator A−µ can be presented in the form

Hµ = A−ΞA
+
Ξ +W2 − 2W ′σ3 , A−µ = −(A−Ξ −W)(A+

Ξ +W) . (4.4.24)

Function W(x) in the anomaly-free scheme of quantization plays a role of superpotential for corre-

sponding classical system with second order supersymmetry, [Plyushchay (2000a); Klishevich and

Plyushchay (2001); Plyushchay (2017)].
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4.5 Remarks

Along with the harmonic oscillator, there are many bosonic systems that have hidden bosonized

supersymmetry and the idea of the Foldy-Wouthuysen transformation is not new, see [Plyushchay

(1996, 2000a); Gamboa et al. (1999); Correa and Plyushchay (2007); Correa et al. (2008); Jakubsk�y

et al. (2010)]. In fact, one can use the transformation (4.3.18) in the generators of the super-

extended free particle given in Chap. 2, Sec. 2.3, to obtain the hidden superconformal symmetry

of the bosonic free particle.

The exotic feature here is the supersymmetric system from where we get the bosonic superal-

gebra which, in principle, does not correspond to the Darboux transformation scheme. However,

it is possible to obtain such a system starting from the classical level: Consider a classical system

described by a Hamiltonian

H = p2 +W 2 +W ′[θ+, θ−] (4.5.1)

with superpotential W (x) =
√
x2 + c2, where c > 0 is a constant, besides θ+ and θ− = (θ+)∗ are

Grassmann variables with a nonzero Poisson bracket {θ+, θ−}
PB

= −i, that after quantization are

realized as the creation-annihilation fermionic operators θ± → σ± = 1
2 (σ1± iσ2). A direct quantum

analog of this system is a composition of two isospecral systems and is in the phase of spontaneously

broken supersymmetry, with nonsingular superpartner potentials V± = x2 + c2 ± x/
√
x2 + c2. The

spectrum of subsystems is di�erent from that of the quantum harmonic oscillator. On the other

hand, if before the quantization we realize a canonical transformation x→ X = x+N∂G(x, p)/∂p,

p → P = p − N∂G(x, p)/∂x, θ± → Θ± = e±iG(x,p)θ±, where N = θ+θ− and G = 1
2 arcsin

(
(p2 −

x2 − c2)/(p2 + x2 + c2)
)
[Klishevich and Plyushchay (2001); Inzunza and Plyushchay (2018)], we

obtain the canonically equivalent form of the Hamiltonian H = P 2 + X2 + c2. In the canonically

transformed system, the new classical Grassmann variables Θ± completely decouple and are the odd

integrals of motion with Poisson bracket {Θ+,Θ−}
PB

= −i. The quantization of the canonically

transformed system gives us exactly the extended quantum system (4.3.1) shifted just for the

additive constant c2.

Another possibility is a �naive� application of the comformal bridge. To do so, let us start by

setting the super-Schrödinger symmetry generators for the super-free particle system,

H = − 1
2p

2I , D = 1
4{x, p}I , K = x2

2 I , Z = −σ3

4 , (4.5.2)

P = pI , X = xI , Σ1 = σ1 , Σ2 = −σ2 , πa = pΣa ξa = xΣa , (4.5.3)
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where p = i ddx . The conformal bridge transformation produces

SHS−1 = − (a−)2

2 I , SDS−1 = − i
4LosI , SKS−1 = (a+)2

2 I (4.5.4)

SZS−1 = Z , SXS−1 = a+√
2
I , SPS−1 = −i a

−
√

2
I , (4.5.5)

SΣaS
−1 = Σa , SξaS

−1 = a+√
2
Σa , SπaS

−1 = −i a
−
√

2
Σa , (4.5.6)

that up to a complex proportionality constant, they match with the generators presented in Sec.

4.3 at t = 0. The conformal bridge works �ne in this case because D and its transformed version

are matrix generators containing two copies of the same di�erential operator. In the general case,

both superpartners are di�erent from each other and the transformation fails.
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Chapter 5

Rationally extended conformal

mechanics

As we have shown in Chap. 1, Sec. 1.2, DCKA transformation allows us to construct new quantum

systems starting from a well known original one. In this context, the systems that appear due

to these transformations applied to the harmonic oscillator are the rationally extended harmonic

oscillators, that is, a harmonic potential plus a regular rational function of x, and to obtain a well-

de�ned system, we have to follow some rules for selecting the set of seed states for transformation.

The selection rule that gives us a regular potential is known as the Krein-Adler theorem, [Krein

(1957); Adler (1994); Dubov et al. (1994); Quesne (2012); Gómez-Ullate et al. (2013)]. In the

research carried out in the article [Cariñena et al. (2018)], we found new selection rules to construct

completely isospectral rational extensions for the AFF model with integer coupling constant m(m+

1), where m = 1, 2, . . ., as well as deformations with gaps in their spectrum. We also learned how

to construct the spectrum-generating ladder operators of these deformed systems by using what we

call Darboux dualities. The content presented in this chapter is a summary of the results obtained

in [Cariñena et al. (2018)], an article that in turn was inspired by previous research on rational

deformations of the harmonic oscillator [Cariñena and Plyushchay (2017)].

Before to start, let us explain what a Darboux duality is with a simple example: consider the

half-harmonic oscillator Hamiltonian L0
1. When the �rst m physical states are considered as seed

states for the DCKA transformation, it is not di�cult to show that the resulting system is the AFF

model Lm, de�ned in (4.1.3), shifted by the constant −2m. Now, by performing the transformation

x → ix in the physical eigenstates, we produce new nonphysical solutions, and when the �rst m

functions obtained in this way are taken as seed states for the DCKA transformation, the resulting

system is again Lm but now shifted by the positive constant 2m. So both Darboux transformation

1This Hamiltonian is formally (4.1.2), but de�ned in the domain {ψ ∈ L2((0,∞), dy)|ψ(0+) = 0}. The physical
states are the odd eigenstates of the harmonic oscillator system.
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schemes generate essentially the same quantum system, and in this sense we call them as dual

Darboux schemes. The intertwining operators of both dual schemes are independent of each other

and it can be shown that operators constructed by means of products of these intertwiners are

equivalent to powers of sl(2,R) generators [Cariñena et al. (2018)].

Here we study rational extended systems built on the basis of the half-harmonic oscillator, and

for simplicity, we present the following notation to refer to the physical and nonphysical eigenstates

of the quantum harmonic oscillator system (from now on QHO),

n ≡ ψn(x), −n ≡ ψ−n = ψn(ix) , ñ ≡ ψ̃n , −̃n ≡ ψ̃−n . (5.0.1)

5.1 Generation of rationally extended systems

Rational deformations (extensions) of the QHO system are constructed following the Krein-Adler

theorem [Krein (1957); Adler (1994)], which ensures that the Wronskian of the seed states (or

henceforth Darboux scheme) (n1, n1 + 1, . . . , n`, n` + 1), where the numbers nj ∈ N, j = 1, . . . , `,

indicate the chosen seed states, see notations (5.0.1), does not have zeros on the real axis. The

corresponding DCKA transformation produces

L(n1,n1+1,...,n`,n`+1) = L+ 4`+
F (x)

Q(x)
, (5.1.1)

where F (x) and Q(x) are even polynomials, with Q(x) taking positive values on real line and having

degree higher by two of degree of F (x). According with Chap. 1, the spectrum of the system (5.1.1)

is almost isospectral to the QHO spectrum: there are missing energy levels or gaps, related to the

energy levels corresponding to seed states.

On the other hand, deformations of the AFF model Lm can be obtained from the half-harmonic

oscillator by considering the scheme (n1, n1 + 1, . . . , n`, n` + 1, 2k1 + 1, . . . , 2km + 1), where even

indexes inside the set n1, n1 + 1, . . . , n`, n` + 1 represent nonphysical eigenstates of L0 and ki,

i = 1, . . . ,m, are identi�ed as m odd states which were not considered in the �rst set of 2n` states.

The Hamiltonian operator

L(n1,n1+1,...,n`,n`+1,2k1+1,...,2km+1) = Lm + 2m+ 4`+
F̃ (x)

Q̃(x)
, (5.1.2)

appears as a �nal result of the DCKA transformation, where polynomials F̃ (x) and Q̃(x) have the

properties similar to those of F (x) and Q(x) in (5.1.1). Note that in this way we can only construct

deformations of Lm. Rational deformations of Lν , with arbitrary values for parameter ν, cannot

be connected with the harmonic oscillator as we did here, and the issue about their construction

is discussed properly in Chap. 7. In general such a system has gaps in its spectrum. If, however,
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the set n1, n1 + 1, . . . , n`, n` + 1, 2k1 + 1, . . . , 2km + 1 contains all the `+m odd indexes from 1 to

2km + 1, the generated deformed AFF system will have no gaps in its spectrum and we obtain a

system completely isospectral to L0 + 4`+ 2m. Such completely isospectral (gapless) deformations

in the QHO case are only possible if we include Jordan states in the construction.

The mirror diagram method developed and used in [Cariñena et al. (2018)] is a technique such

that a dual scheme with nonphysical �negative� eigenstates (5.0.1), is derived from a �positive�

scheme with physical states of Los and, vice-versa. This can be done by using the algorithmic

procedure described in Appendix B.1 and the �nal picture is the following:

� For a given positive scheme ∆+ ≡ (l+1 , . . . , l
+
n+

), where l+i with i = 1, . . . , n+, one gets the

negative scheme ∆− = (−0̌, . . . ,−ň−i = l+i − l+n+
, . . . ,−l+n+

), where −ň−i , means that the

corresponding number −n−i is omitted from the set ∆−.

� If we have instead the negative scheme ∆− ≡ (−l−1 , . . . ,−l−n−), where −l−j with j = 1, . . . , n−,

one obtains the positive scheme ∆+ = (0̌, . . . , ň+
j = l−n− − l

−
j , . . . , l

−
n−), where symbols ň+

j

represent again the states missing from the list of the chosen seed states.

Obviously, Darboux scheme must be constructed in such a way that the generated Hamiltonian is

a non-singular operator, that is, by means of the rules discussed above. Then, having two dual

schemes on hand, the relation

e−n+x
2/2W (∆−) = en−x

2/2W (∆+) , (5.1.3)

is valid modulo a multiplicative constant. From here one can see that the Hamiltonians of dual

schemes satisfy

L(+) − L(−) = 2N , N ≡ n+ + n− = l+n+ + 1 = l−n− + 1 , (5.1.4)

where L(+) and L(−) correspond to

L(±) = − d2

dx2
+ V (x)− 2

d2

dx2
lnW (∆±) . (5.1.5)

On the other hand, the intertwining operators A−n+
and A−n− that correspond to each scheme are

constructed following (1.2.5), however, we prefer to use the more generic notation

A−n+
= A−(+) , A−n− = A−(−) , A+

(+) = (A−(+))
† , A+

(−) = (A−(−))
† . (5.1.6)

By means of the negative scheme we do not eliminate any energy level from the spectrum, but

instead energy levels can be introduced, but not obligatorily, in its lower part. In the particular
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special case of completely isospectral deformations of the (shifted) Lm systems, all m seed states

composing negative scheme are nonphysical odd eigenstates of L0, and the transformation does not

introduce any additional energy level.

The construction of the mirror diagram can be better understood with the following example:

Consider the illustration in �gure 5.1. In the upper line we have represented the �rst eleven physical

eigenstates of the harmonic oscillator by circles, where the black ones are the seed states of the

positive scheme (1, 4, 5, 10, 11), which produces a system of the type (5.1.2). In a similar way, the

�rst eleven nonphysical states with negative energy are indicated by the circles in the bottom line,

and the marked ones are the seed states of the corresponding dual negative scheme. In general,

when considering a scheme of the form (. . . , N), in the upper line we ordered from left to right

all the physical state from ψ0 to ψN , besides in the bottom line we set from right to left all the

states between ψ−0 to ψ−N . After marking the states of the positive scheme, the construction of

the negative scheme is by means of a sort of an �anti-re�ection� transformation with respect to an

imaginary line in the center, that is parallel to the other two lines. The construction of the positive

scheme from the negative one is analogous.

Figure 5.1: A mirror diagram example.

This construction seems to be related with the Maya diagram formalism, for a review see

Gómez-Ullate and Milson (2019). However, our technique is completely based on the existence

of the �rst-order ladder operators and their relationship with the Darboux transformation (this is

the key to its generalization for the AFF model in Chap. 7), besides for the Maya diagrams it is

important to study the proprieties of an additional structure called the pseudo-Wronskian, which

we do not introduce in our work.

5.2 Spectrum-generating ladder operators: completely isospec-

tral case

In this section we explore the possibilities of constructing spectrum-generating ladder operators for

rationally extended isospectral systems. We start with the simplest example and then expand on

the ideas for the general case.

Consider the simplest deformed AFF system generated via the Darboux transformation based
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on the nonphysical eigenstate ψ−3 = (2x3+3x)ex
2/2 of the half-harmonic oscillator L0. The resulting

Hamiltonian takes the form

L(−) := L1 − 2 + 8
2x2 − 3

(2x2 + 3)2
. (5.2.1)

By the method of the mirror diagram, we �nd that up to a constant shift, the system can be

generated alternatively by the DCKA transformation based on the set (1, 2, 3)2 ,

L(+) := L(−) + 8 . (5.2.2)

The intertwiners of the negative scheme are

A−(−) = ψ−3
d

dx

1

ψ−3
=

d

dx
− x− 1

x
− 4x

2x2 + 3
, A+

(−) = (A−(−))
† . (5.2.3)

They provide us the factorization relations A+
(−)A

−
(−) = L0 + 7 , A−(−)A

+
(−) = L(−) + 7 = L(+) − 1.

In correspondence with them, A−(−) intertwines the Hamiltonian operators L0 and L(−),

A−(−)L0 = L(−)A
−
(−) = (L(+) − 2∆E)A−(−) , ∆E = 4 , (5.2.4)

and the intertwining relation for A+
(−) is obtained by Hermitian conjugation.

The systems L0 and L(+) are also intertwined by the third order operators A±(+), where the

operator A−(+) is uniquely speci�ed by its kernel : kerA−(+) = span {ψ1, ψ2, ψ3}. We have the

intertwining relation A−(+)L0 = L(+)A
−
(+) = (L(−) + 8)A−(+), and the conjugate relation for A+

(+).

To construct ladder operators for this deformed system we can �Darboux dress� the ladder

operators of the half-harmonic oscillator which are nothing else than (a±)2. The �rst pairs of

operators produced in this way are

A± = A−(−)(a
±)2A+

(−) . (5.2.5)

These operators together with the Hamiltonian L(−) generate a nonlinear deformation of the con-

formal symmetry given by the commutation relations

[L(−),A±] = ±4A±, [A−,A+] = 16
(
L(−) + 3

) (
L(−) + 7

) (
L(−) + 1/2

)
. (5.2.6)

The roots of the fourth order polynomial in the relation

A+A− = (L(−) + 7)(L(−) + 3)(L(−) − 1)(L(−) − 3) , (5.2.7)

2The state ψ2 is not a physical state of the half-harmonic oscillator L0.
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correspond to eigenstates of L(−), which belong to the kernel of the lowering operator,

kerA− = span {A−(−)ψ̃
−
3 , A

−
(−)ψ

−
1 , A−(−)ψ0, A

−
(−)ψ1}. (5.2.8)

The last state A−(−)ψ1 = A−(+)ψ5 describes here the ground state of L(−) of eigenvalue E = 3, and

other states are nonphysical.

On the other hand, the roots in the product

A−A+ = (L(−) + 11)(L(−) + 7)(L(−) + 3)(L(−) + 1) , (5.2.9)

correspond to eigenvalues of the eigenstates of L(−) which appear in the kernel of the raising ladder

operator,

kerA+ = span{A−(−)ψ
−
5 , A

−
(−)ψ̃

−
3 , A

−
(−)ψ

−
1 , A

−
(−)ψ

−
0 } . (5.2.10)

All the states in this kernel are nonphysical. In correspondence with the described properties of the

ladder operators (5.2.5) they are the spectrum-generating ladder operators for the system L(−) :

acting by them on any physical eigenstate of L(−), we can generate any other physical eigenstate.

The kernels of the ladder operators contain here the same nonphysical eigenstate A−(−)ψ̃
−
3 = A−(−)ψ

−
1 .

Below we shall see that in the case of non-isospectral rational deformations of the AFF system

the kernels of analogs of such lowering and raising ladder operators contain some common physical

eigenstates, see for example Figure 5.2 in next section.

In a similar way, one can construct the ladder operators for L(−) via Darboux-dressing of (a±)2

by the third order intertwining operators,

B± = A−(+)(a
±)2A+

(+) , [L(−3),B±] = ±4B± . (5.2.11)

However, these di�erential operators of order 8 are not independent and reduce to the fourth order

ladder operators (5.2.5) multiplied by the second order polynomials in the Hamiltonian,

B− = A−(L(−) + 1)(L(−) + 5) and B+ = (B−)† . (5.2.12)

As the �rst and third order operators A±(−) and A±(+) intertwine the half-harmonic oscillator

with the system L(−) with a nonzero relative shift, we can construct yet another pair of the ladder

operators for the quantum system L(−),

C− = A−(+)A
+
(−) , C+ = A−(−)A

+
(+) , (5.2.13)

[L(−), C±] = ±8 C± , [C−, C+] = 32
(
L3

(−) + 6L2
(−) − L(−) + 30

)
. (5.2.14)
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The kernel of the lowering ladder operator is

ker C− = span {(ψ−(−))
−1, A−(−)ψ1, A

−
(−)ψ2, A

−
(−)ψ3} . (5.2.15)

Here A−(−)ψ1 = A−(+)ψ5 and A−(−)ψ3 = A−(+)ψ7 are the ground and the �rst exited states of L(−).

On the other hand, all the states in the kernel of the raising ladder operator are nonphysical :

ker C+ = span {A−(−)ψ
−
7 , A

−
(−)ψ

−
2 , A

−
(−)ψ

−
1 , A

−
(−)ψ

−
0 } . (5.2.16)

As a result, the space of states of L(−) is separated into two subspaces, on each of which the ladder

operators C+ and C− act irreducibly. One subspace is spanned by the even eigenstates and the

another subspace corresponds to the odd eigenstates. The ladder operators C±, unlike A±, are

therefore not spectrum-generating operators for the system L(−). Notice that from the point of

view of the basic properties of the ladder operators C±, they are similar to the operators (a±)4

in the case of the half-harmonic oscillator L0. The essential di�erence here, however, is that the

ladder operators C± are independent from the spectrum-generating ladder operators A± and have

the same di�erential order equal to four. We shall see that for non-isospectral rational extensions

of the AFF systems the direct analogs of the operators C± will constitute an inseparable part of

the set of the spectrum-generating operators.

The described properties of this particular example are extended for the general case of isospec-

tral deformations and can be summarized as follows. No matter what set of the m odd nonphysical

eigenstates of the quantum harmonic oscillator we select, the lower order ladder operators A±

obtained by Darboux-dressing of the ladder operators of the half-harmonic oscillator are spectrum-

generating operators for the rationally deformed AFF system. They commute for a polynomial of

order 2m+1 in the corresponding Hamiltonian with which they produce a deformation of the confor-

mal sl(2,R) symmetry of the type of W -algebra [de Boer et al. (1996)]. Other spectrum-generating

ladder operators, which can be constructed on the basis of other DCKA schemes via the Darbox-

dressing procedure, act on physical states in the same way as the operatorsA± of order 2(m+1), and

are equal to them modulo the multiplicative factor in the form of the polynomial in the Hamiltonian

operator of the system. The ladder operators C± constructed by �gluing� intertwining operators of

the two dual schemes are not spectrum-generating. Particularly, for the isospectral deformation of

the system Llm+1 based on the set of the seed states (−(2l1 + 1),−(2l2 + 1), . . . ,−(2lm + 1)) with

0 ≤ l1 < l2 < . . . < lm, lm ≥ 1, the operator C− annihilates the lowest lm+1 states in the spectrum

of the system.
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5.3 Spectrum-generating ladder operators: non-isospectral case

As in the previous section, here we explore the construction of spectrum-generating ladder opera-

tors for non-isospectral deformations of the AFF system through a particular example, and then

generalize the ideas.

Let us start with Darboux's positive scheme (1, 4, 5, 10, 11) that we have already used as example

to explain the mirror diagram technique in Sec. 5.1. There we had already obtained the negative

scheme which is (−2,−3,−4,−5,−8,−9,−11).

After performing the DCKA transformation using the positive scheme, we obtain the Hamilto-

nian operator

L(+) := − d2

dx2
+ x2 − 2(lnW (1, 4, 5, 10, 11))′′ , (5.3.1)

where

W (1, 4, 5, 10, 11) ∝ xe−
5
2x

2

(467775 + 4x2(155925− 93555x2 + 8x4(62370− 21945x2+

+4x4(735 + 1145x2 − 504x4 + 358x6 − 88x8 + 8x10))))
.(5.3.2)

The graph of the resulting potential and the quantum spectrum of the system (5.3.1) are shown on

Figure 5.2.

Figure 5.2: Potential of the system (5.3.1). The energy levels of the corresponding physical states annihi-
lated by ladder operators B−, B+, A−, A+, and C− are indicated from left to right.

The potential has three local minima and the system supports three separated states in its

spectrum which are organized in two �valence bands� of one and two states. On the other hand,

the dual scheme produces the same Hamiltonian operator but shifted by a constant, L(+)−L(−) =

6∆E = 24. The fact that the mutual shift of both Hamiltonians is proportional to the di�erence of

two consecutive energy levels in the spectrum of the AFF model allows us to use below exactly the

same rule for the construction of the ladder operators of the type C± as in the previous section. As

we shall see, the number of physical states annihilated by the lowering operator C− in this case is
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equal exactly to six. Later, we also shall see that in some cases of the rational gapped deformations

of the AFF systems, the mutual shift of the corresponding Hamiltonian operators can be equal to

the half-integer multiple of ∆E, and then the procedure for the construction of the ladder operators

of the type C± will require some modi�cation.

In the DCKA construction of the Hamiltonian operator L(+), the energy levels corresponding

to the physical seed eigenstates of the half-harmonic oscillator L0 were removed from the spectrum

producing two gaps. In the (up to a shifted constant) equivalent system L(−) based on nonphysical

seed eigenstates of L0, the energy levels were added under the lowest energy of the ground state

of L0. The intertwining operators associated with the positive scheme A±(+) have di�erential order

�ve, while the operators A±(−), obtained from the negative scheme, have di�erential order eleven.

The three lowest physical states of the system (5.3.1) which correspond to the three separated

energy levels can be presented in two equivalent forms

φ0 = A−(−)ψ̃
−
8 = A−(+)ψ3 , φ1 = A−(−)ψ̃

−
4 = A−(+)ψ7 , φ2 = A−(−)ψ̃

−
2 = A−(+)ψ9 , (5.3.3)

where equalities are modulo a nonzero constant multiplier. We have here the intertwining relations

A−(+)L0 = L(+)A
−
(+) = (L(−) + 24)A−(+) , A−(−)L0 = L(−)A

−
(−) = (L(+) − 24)A−(−), (5.3.4)

and the conjugate relations for A+
(+) and A

+
(−).

Let us turn now to the construction of the ladder operators for the system under consideration.

Like in the isospectral case, here we have two ways to realize Darboux-dressing of the ladder

operators −C±0 = (a±)2. Using A±(+) for this purpose , we obtain the operators of order twelve:

B± = A−(+)(a
±)2A+

(+) , [L(−),B±] = ±∆EB± . (5.3.5)

The kernel of B− contains three physical states φ0, φ1 and φ3 = A−(−)ψ1 = A−(+)ψ13 among other 9

nonphysical solutions with negative energy. They correspond to the ground state, the lowest states

in the isolated �valence band�, and the �rst state in the equidistant part of the spectrum, see Figure

5.2. On the other hand B+ annihilates φ0, the upper state in the valance band φ2 and other 10

nonphysical states. Then, due to the incapacity of these operators to connect the isolates states

with the equidistant part of the spectrum, it is obvious that B± are not spectrum-generating.

We also can construct ladder operators by using A±(−) instead,

A± = A−(−)(a
±)2A+

(−) , [L(+),A±] = ±∆EA± . (5.3.6)

These are also not spectrum-generating operartors because the leap they make does not allow

to overcome the gaps. Operator A+ detects all the states in both separated valence bands by
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annihilating them. In addition to the indicated physical states, the lowering operator A− also

annihilates the lowest state in the half-in�nite equidistant part of the spectrum.

Therefore, the essential di�erence of the non-isospectral rational deformations of the AFF model

from their isospectral rational extensions is that there is no pair of spectrum-generating ladder

operators constructed via the Darboux-dressing procedure. This situation is similar to that in the

rationally extended QHO systems [Cariñena and Plyushchay (2017)].

We now construct the ladder operators C± by �gluing� the intertwining operators of di�erent

types. As in the case of the isospectral deformations, they also will not be the spectrum-generating

operators, but together with any pair of the ladder operators B±, or A± they will form a spectrum-

generating set. So, let us consider

C− = A−(−)A
+
(+) , C+ = A−(+)A

+
(−) , [L(−), C±] = ±6∆EC± . (5.3.7)

They are independent from the ladder operators constructed via the Darboux-dressing procedure,

and their commutator [C−, C+] is a certain polynomial of order 11 in the Hamiltonian L(−). The

operators C± divide the Hilbert space of the system into six in�nite subsets on which they act

irreducibly: The C− transforms a physical eigenstate into another physical eigenstate by making

it skip six levels below and annihilates the �rst six eigenstates of the spectrum. The operator C+

does not annihilate any physical state here and skip the energy of an arbitrary state in to six levels

above. Therefore they connect the separated states with the equidistant part of the spectrum.

As a result, the pair C± together with any pair of the ladder operators, B± or A± are the

spectrum-generating set. Figure 5.3 illustrates the action of the ladder operators and show how we

can use them to obtain a particular state, starting from an arbitrary one.

All the described picture is generalized directly in the case when the index of the last seed state

used in the corresponding DCKA transformation is odd. Then the corresponding scheme based on

physical eigenstates of L0 is of the form (. . . , 2lm, 2lm+1), and the dual scheme is (. . . ,−(2lm+1)).

Following the same notation as we used in the particular examples, the Hamiltonian operators

generated in these two dual schemes are shifted by the distance equal to the separation ∆E = 4 of

energy levels in the equidistant part of the spectrum times integer number lm + 1 : L(+) − L(−) =

4lm + 4, see (5.1.4), and the picture is the following:

� Operators A± = A−(−)(a
±)2A+

(−) are of di�erential order 2n− + 2. Rising and lowering opera-

tors of this kind annihilate all the states in the isolated valence bands, in the sense of a group

of energy levels separated by a gap from the equidistant part of the spectrum. They act as

regular ladder operators in the equidistant part of the spectrum.

� Operators B± = A−(+)(a
±)2A+

(+) are of di�erential order 2n+ +2. B− annihilates all the lowest

states in each valence band and the lowest state in the equidistant part of the spectrum. The
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Figure 5.3: On the left: The numbers on the left correspond to the indices of the physical eigenstates
ψ2l+1 of the half-harmonic oscillator that are mapped �horizontally� by operator A−(+) into eigenstates Ψn

of the system (5.3.1). Lines show the action of the ladder operators coherently with their structure (5.3.6),
(5.3.5) and (5.3.7). The marked set of the states 0, 1, 2, 3, 5, 8 on the right corresponds to six eigenstates
of L(+) annihilated by C−. On the right: Horizontal lines correspond to the energy levels of L(+). Upward
and downward arrows represent the action of the rising and lowering ladder operators, respectively. As it
is shown in the �gure on the right, following the appropriate paths, any eigenstate can be transformed into
any other eigenstate by applying subsequently the corresponding ladder operators.

raising operator B+ annihilates all the highest states in each valence band. They act in the

same way as A± in the equidistant part of the spectrum.

� Operators C± of the form (5.3.7) have a di�erential order n− + n+ = 2lm + 2, and their

commutation with Hamiltonian produces:

[L(−), C±] = ±(lm + 1)∆EC± . (5.3.8)

Lowering operator C− annihilates lm + 1 physical states, where we �nd all of the isolated

states and some exited states of the equidistant part. Rising operator C+ does not annihilate

any physical state.

When we have the schemes (. . . , 2lm − 1, 2lm) ∼ (. . . ,−2lm) generating a gapped rational

extension of some AFF system, the corresponding Hamiltonian operators associated with them are

shifted mutually for the distance L(+) − L(−) = 4lm + 2 = (lm + 1
2 )∆E, that is equal to the half-

integer multiple of the energy spacing in the equidistant part of the spectrum and in the valence

bands with more than one state. In this case the procedure related to the construction of the

ladder operators A± and B± and their properties are similar to those in the systems generated by
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the schemes (. . . , 2lm, 2lm + 1) ∼ (. . . ,−(2lm + 1)). However, the situation with the construction

of the ladder operators of the type C± in this case is essentially di�erent. We still can construct

the operators C± of the form (5.3.7). Such operators will be of odd di�erential order 2lm + 1, and

their commutation relations with any of the Hamiltonian operators L(+) and L(−) will be of the

form [L, C±] = ±(4lm + 2)C±. This means that these operators acting on physical eigenstates of L

will produce nonphysical eigenstates excepting the case when the lowering operator C− acts on the

states from its kernel. The square of these operators will not have the indicated de�ciency and will

form together with the ladder operators A± or B± the set of the spectrum-generating operators.

This picture can be compared with the case of the half-harmonic oscillator L0, where the �rst order

di�erential operators a± will have the properties similar to those of the described operators C±. In

this case we can however modify slightly the construction of the ladder operators of the C± type

by taking

C̃− = A−(−)(a
−)A+

(+) , C̃+ = A−(+)(a
+)A+

(−) . (5.3.9)

These ladder operators satisfy the commutation relations [L(±), C̃±] = 4(lm + 1)C̃±, and transform

a particular physical states into other physical states with di�erent energy.

To conclude this section, let us summarize the structure of the nonlinearly deformed conformal

symmetry algebras generated by di�erent pairs of the corresponding ladder operators and Hamil-

tonians of the rationally deformed conformal mechanics systems. The commutators of the ladder

operators A±, B± and C± with Hamiltonian operators are given, respectively, by Eqs. (5.3.6),

(5.3.5) and (5.3.7) with ∆E = 4. The commutation relations of the form (5.3.6) also are valid

for the case of the isospectral deformations discussed in the previous section. To write down the

commutation relations between raising and lowering operators of the same type in general case, let

us introduce the polynomial functions

Pn+
(x) = Π

n+

k=1(x− 2nk − 1) , Rn−(x) = Π
n−
l=1(x+ 2nl + 1), (5.3.10)

where nk > 0 are the indices of the corresponding seed states in the positive scheme and −nl < 0

are the indices of the seed states in the negative scheme. With this notation, we have the relations

A+
(+)A

−
(+) = Pn+(L0), A−(+)A

+
(+) = Pn+(L(+)) = Pn+(L(−)+2(n−+n+)), and A+

(−)A
−
(−) = Rn−(L0),

A−(−)A
+
(−) = Rn−(L(−)). Then we obtain

[A−,A+] = (x+ 1)(x+ 3)Rn−(x)Rn−(x+ 4)
∣∣L(−)−4

x=L(−)
, (5.3.11)

[B−,B+] = (x+ 1)(x+ 3)Pn+(x+ 4)Pn+(x)
∣∣x=L(−)+2N−4

x=L(−)+2N
, (5.3.12)

[C−, C+] = Rn−(x)Pn+
(x)
∣∣x=L(−)+2N

x=L(−)
, (5.3.13)

where N = n−+n+, and relation (5.3.11) also is valid in the case of isospectral deformations. In the
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case of the non-isospectral deformations given by the dual schemes (. . . , 2lm−1, 2lm) ∼ (. . . ,−2lm),

the corresponding modi�ed operators (5.3.9) satisfy the commutation relation

[C̃−, C̃+] = (x+ 1)Rn−(x)Pn+
(x+ 2)

∣∣x=L(−)+2N−2

x=L(−)
. (5.3.14)

Thus, in any rational deformation of the conformal mechanics model we considered, each pair

of the conjugate ladder operators of the types A±, B± or C± generates a nonlinear deformation of

the conformal sl(2,R) symmetry. The commutation relations between ladder operators of di�erent

types of the form [A±, C±], etc. is considered in next chapter, and their taking into account gives

rise naturally to di�erent nonlinearly extended versions of the superconformal osp(2|2) symmetry

[Inzunza and Plyushchay (2019a)].

5.4 Remarks

The construction of the spectrum-generating ladder operators can also be explored by using in-

tertwining operators between the �nal rational extended model and some intermediate system in

the Darboux chain. This possibility was explored in [Cariñena et al. (2018)]. Anyway, the �nal

conclusion of this is that one always has a triad of pairs of ladder operators A±, B± and C± which

behaves as described above. The only di�erence here is the number of nonphysical states that

appear in the corresponding kernels.

An unresolved question for us is if there is any relationship between rationally extended systems

and other systems of quantum mechanics, such as the conformal model (2.1.1) or a PT deforma-

tion of it [Mateos Guilarte and Plyushchay (2017, 2019); Plyushchay (2020)], we are thinking of

something like the conformal bridge. It can be speculated that if such a relationship exists, it

would be useful in applications related to integrable systems of in�nite degrees of freedom, since

PT symmetric systems have opened new branches in the search for solitonic solutions for the KdV

equation and other integrable models [Correa and Fring (2016); Mateos Guilarte and Plyushchay

(2019); Cen et al. (2020)].

In the next chapter we continue with rationally extended AFF models characterized by integer

coupling constants as well as extended QHO systems, but now from the perspective of supersym-

metric quantum mechanics.
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Chapter 6

Nonlinear supersymmetries in

rationally extended systems

We now turn to the study of the extensions and deformations of the superconformal and super-

Schrödinger symmetries that appear in the N = 2 super-extended systems described by the super-

partners (Los, Ldef ) and (L0, Lm,def ). Here Ldef and Lm,def correspond to rational deformations

of the QHO system and the AFF model with integer values of the parameter ν = m, m ∈ N,

respectively. As we have seen in the last chapter, the rational deformations of the QHO system

and the AFF model are characterized, in the general case, by a �nite number of missing energy

levels, or gaps, in their spectra, and the description of such systems requires more than a couple of

spectrum-generating operators. It is because of this expansion of the sets of ladder operators, whose

di�erential order exceeds two, that nonlinearly deformed superconformal and super-Schrödinger

structures appear. This chapter, based on the article [Inzunza and Plyushchay (2019a)], is devoted

to the description of the complete sets of generators of the indicated symmetries. At this point, we

will again take advantage of the Darboux duality property of the QHO system.

6.1 Basic intertwining operators

According to [Cariñena and Plyushchay (2017); Cariñena et al. (2018)], with each of the dual

schemes it is necessary �rst to associate two basic pairs of the intertwining operators. Here, we

discuss general properties of such operators without taking care of the concrete nature of the system

built by the DCKA transformation. On the way, however, some important distinctions between

rational deformations of the AFF model and harmonic oscillator have to be taken into account,

and for this reason, it is convenient to speak of two classes of the systems. We distinguish between

them by introducing the class index c, where c = 1 and c = 2 will correspond to deformed harmonic
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oscillator and deformed AFF conformal mechanics model, respectively.

As already established in the previous chapter, we will denote the Hamiltonian produced by

the positive scheme ∆+ (negative scheme ∆−) by L(+) (L(−)), and the corresponding intertwining

operators by A−(+) and (A−(+))
† ≡ A+

(+) ( A
−
(−) and (A−(−))

† ≡ A+
(−)), see Sec. (5.1). These operators

satisfy the relations

L(+) − L(−) = 2N , N = n+ + n− , (6.1.1)

A−(+)L = L(+)A
−
(+) , A−(−)L = L(−)A

−
(−) , (6.1.2)

and the corresponding Hermitian conjugate relations for A+
(+) and A+

(−). Here L could be Los or

L0, depending on the class index c of the rationally deformed system L(±) that we want to study.

Applying operator identities (6.1.2) to an arbitrary physical or nonphysical (formal) eigenstate ϕn

of L di�erent from any seed state of the positive scheme and using Eq. (5.1.4), one can derive the

equality

A−(−)ϕn = A−(+)ϕn+N , (6.1.3)

to be valid modulo a multiplicative constant. As a result, both operators acting on the same state

of the harmonic oscillator produce di�erent states of the new system. We have seen this behavior

before in last chapter, Sec. 5.3. The Hermitian conjugate operators A+
(−) and A+

(+) do a similar

job but in the opposite direction. Eq. (6.1.3) suggests that some peculiarities should be taken into

account for class 2 systems : the in�nite potential barrier at x = 0 assumes that physical states of

L0 and L(±) systems are described by odd wave functions. Then, in order for A−(+)to transform

physical states of L0 into physical states of L(±), we must take n+N to be odd for odd n in (6.1.3).

This means that A−(−) transforms physical states into physical only if N is even. In the case of odd

N , it is necessary to take A−(−)a
− or A−(−)a

+ as a physical intertwining operator. It is convenient

to take into account this peculiarity by denoting the remainder of the division N/c by r(N, c) : it

takes value 1 in the class c = 2 of the systems with odd N and equals zero in all other cases.

The products of the described intertwining operators are of the form (1.2.7), and for further

analysis it is useful to write down them explicitly:

A+
(±)A

−
(±) = Pn±(L) , A−(±)A

+
(±) = Pn±(L(±)) , (6.1.4)

Pn+(η) ≡
∏n+

k=1(η − 2l+k − 1) , Pn−(η) ≡
∏n−
k=1(η + 2l−k + 1) . (6.1.5)

Here l+k are indexes of physical states with eigenvalues 2l+k + 1 in the set ∆+, and −l−k correspond

to nonphysical states with eigenvalues −2l−k − 1 in the negative scheme ∆−. In the same vein, it is
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useful to write

(a+)k(a−)k = Tk(L0), (a−)k(a+)k = Tk(L0 + 2k) , (6.1.6)

Tk(η) ≡
∏k
s=1(η − 2s+ 1) , Tk(η + 2k) ≡

∏k
s=1(η + 2s− 1) . (6.1.7)

We also have the operator identities

(a−)N = (−1)n−A+
(−)A

−
(+) , f(L(−))A

−
(+)(a

+)n− = (−1)n−h(L(−))A
−
(−)(a

−)n+ , (6.1.8)

and their Hermitian conjugate versions, where f(η) and h(η) are polynomials whose explicit struc-

ture is given in Appendix C.1. In one-gap deformations of the harmonic oscillator and gapless

deformations of L1 these polynomials reduce to 1.

6.2 Extended sets of ladder and intertwining operators

Actually, instead of three types of ladder operators, we have a total of three families of operators

A±k ≡ A
−
(−)(a

±)kA+
(−) , B±k ≡ A

−
(+)(a

±)kA+
(+) , (6.2.1)

C−N±k′ ≡ A
−
(+)(a

∓)k
′
A+

(−) , C+
N±k′ ≡ (C−N±k′)

† , (6.2.2)

where, formally, k can take any nonnegative integer value and k′ is such that N −k′ ≥ 0, otherwise

operators (6.2.2) reduce to A±k , [Inzunza and Plyushchay (2019a)]. Due to relations (6.1.4)-(6.1.8)

one concludes that at k = 0 and N − k′ = 0 all these operators are reduced to certain polynomials

in L(±). These objects are generated by taking the commutator relations between two arbitrary

representatives of the spectrum generator set described in the previous chapter, and behave like

powers of the ladder operator in the QHO system. Calculations with these operators are discussed

in detail in Appendix C.2, so this chapter contains only the main results.

Independently of the class of the system, or on whether the operators are physical or not, the

three families D±ρ,j = (A±j ,B
±
j ,C

±
j ), ρ = 1, 2, 3, j = 1, 2, . . ., satisfy the commutation relations of

the form

[L(±),D
±
ρ,j ] = ±2jD±ρ,j , [D−ρ,j ,D

+
ρ,j ] = Pρ,j(L(−)) , (6.2.3)

where Pρ,j(L(−)) is a certain polynomial of the corresponding Hamiltonian operator of the system,

whose order of polynomial is equal to di�erential order of D±ρ,j minus one, see Appendix C.2.

Algebra (6.2.3) can be considered as a deformation of sl(2,R) , [Mateos Guilarte and Plyushchay

(2019)].

Of all the operators that can be built, our objective is to discriminate against those that are
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physical and cannot be written as products of lower order elements, belonging to others or to the

same family. Having this in mind, we have the following assertion related to the three families:

� From (6.2.3) one concludes that 2j ∝ ∆E = 2c. Then, for A and B families, the physical

operators are those whose index is j = lc with l ∈ N, while for C family index should be

j = N + r(N, c) + cs, where s is integer such that j > 0.

� For isospectral deformations of the AFF model, the spectrum-generating set is given by any

pair of the conjugate operators A±2 , B
±
2 , or C

±
2 .

� Due to Eq. (6.1.8) one realizes that the basic operators in the general case are
A±k , 0 < k < N ,

B±k , 0 < k < N ,

C±k , 0 < k < 2N + r(N, c) ,

(6.2.4)

� For one-gap deformations of the harmonic oscillator, the set of basic ladder operators can be

reduced further to the set
A±k , 0 < k < n+ ,

B±k , 0 < k < n− ,

C±k , M < k < n+ ,

M =

 max (n−, n+) if n− 6= n+ ,

N/2 if n− = n+ ,
(6.2.5)

where the relations A±n+
= (−1)n−C±n+

and B±n− = (−1)n−C±n− were taken into account.

As is obvious from their explicit form, any of the basic elements belonging to one of the three

families of ladder operators can be constructed by �gluing� two di�erent intertwining operators

associated with an alternative DCKA transformation, which are of the form A(±)a
± and A(±)a

∓,

so their number should also be reduced. Indeed, for general deformations only the operators A−(±)(a
±)n , 0 ≤ n < N ,

A−(±)(a
∓)n , 0 < n < N + r(N, c) ,

(6.2.6)

and their Hermitian conjugate counterparts can be considered as basic, see Appendix C.2. One

can note that the total number of the basic intertwining operators #f = 2[(4N − 2 + r(N, c))/c]

is greater than the number of the basic ladder operators #lad = 2[(4N − 3 + r(N, c))/c] which can

be constructed with their help. In particular case of gapless deformations of the AFF model, the

indicated set of Darboux generators can be reduced to those which produce, by `gluing' procedure,

one conjugate pair of the spectrum-generating ladder operators of the form D±2,ρ.

For c = 1 one-gap systems, identity (6.1.8) allows us to reduce further the set of the basic

intertwining operators, which, together with corresponding Hermitian conjugate ones, is given by
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any of the two options,

Sz ≡



A−(−)(a
+)
|z|
, −N < z ≤ 0 ,

A−(−)(a
−)

z
, 0 < z ≤ n+ ,

A−(+)(a
+)
N−z

, n+ < z ≤ N ,

A−(+)(a
−)

N−z
, N < z < 2N ,

or S
′

z ≡ SN−z , (6.2.7)

see Appendix C.2. Here we have reserved z = 0 and z = N values for index z to the dual schemes

intertwining operators: in the �rst choice, S0 = A−(−) and SN = A−(+), and for the second choice

we have S′0 = A−(+) and S′N = A−(−). Written in this way, these operators satisfy the intertwining

relations SzL = (L(−) + 2z)Sz or S′zL = (L(+) − 2z)S′z, and their Hermitian conjugate versions.

Then, to study supersymmetry, we have to choose either positive or negative scheme to de�ne the

N = 2 super-extended Hamiltonian. We take Sz if we work with a negative scheme, and S′z if

positive scheme is chosen for the construction of super-extension.

6.3 Supersymmetric extensions

For each of the two dual schemes, one can construct an N = 2 super-extended Hamiltonian operator

following the recipe given in Chap. 1, equation (1.2.8). The task is to choose appropriately

H1 = L̆− λ∗ and H0 = L− λ∗. We put L̆ = L(+) and λ∗ = λ+ = 2l+1 + 1 for positive scheme, and

choose L̆ = L(−) and λ∗ = λ− = −2l−1 − 1 for negative scheme. For both options, we set L = Los

if we are dealing with a rational extension of harmonic oscillator, and L = L0 if we work with a

deformation of the AFF model. We name the matrix Hamiltonian associated with negative scheme

as H, and denote by H′ the Hamiltonian of positive scheme. The spectrum of these systems can

be found using the properties of the corresponding intertwining operators described in Sec. 1.2.2,

see also refs. [Cariñena and Plyushchay (2017); Cariñena et al. (2018)]. The two Hamiltonians are

connected by relation H − H′ = −N(1 + σ3) − λ− + λ+, and σ3 plays a role of the R symmetry

generator for both super-extended systems. In this subsection we �nally construct the corresponding

spectrum-generating superalgebra for H and H′. The resulting structures are based on the physical

operators D±ρ,j . As we shall see, the supersymmetric versions of the c = 1 systems are described

by a nonlinearly extended super-Schrödinger symmetry with bosonic generators to be di�erential

operators of even and odd orders, while in the case of the c = 2 systems we obtain nonlinearly

extended superconformal symmetry in which bosonic generators are of even order only.

We construct a pair of fermionic operators on the basis of each intertwining operator from the

set (6.2.6) and their Hermitian conjugate counterparts. Let us consider �rst the extended nonlinear

super-Schrödinger symmetry of a one-gap deformed harmonic oscillator, and then we generalize the
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picture. If we choose the negative scheme, then we use Sz de�ned in (6.2.7) to construct the set of

operators

Qz1 =

 0 Sz

S†z 0

 , Qz2 = iσ3Qz1 , −N < z < 2N . (6.3.1)

They satisfy the (anti)-commutation relations

[H,Qza] = 2izεabQzb , {Qza,Qzb} = 2δabPz(H, σ3) , [Σ,Qza] = −iεabQzb , (6.3.2)

where Σ = 1
2σ3 and Pz are some polynomials whose structure is described in Appendix C.3. For the

choice of the positive scheme to �x extended Hamiltonian, according to (6.2.7), the corresponding

fermionic operators are given by Q′z1 ≡ QN−z1 . They satisfy relations of the same form (6.3.2)

but with replacement H → H′, Σ = 1
2σ3 → Σ′ = − 1

2σ3, Pz(H, σ3) → P′z(H′, σ3) = PN−z(H′ −

N(1 + σ3)− λ− + λ+, σ3), Qz1 → Q
′z
2 and Qz2 → Q

′z
1 . The fermionic operators Q0

a (or Q′0a ) are the

supercharges of the (nonlinear in general case) N = 2 Poincaré supersymmetry, which are integrals

of motion of the systemH (orH′), and P0 = Pn−(H+λ−) (or P0 = Pn+(H′+λ+)) with polynomials

Pn± de�ned in (6.1.5). The operators Q′0a are analogous here to supercharges in Qaν in the linear

case, see Chap. 2. On the other hand, we have here the fermionic operators Q′Na as analogs

of dynamical integrals Saν there. We recall that in the simple linear case considered in section

2.2, the interchange between positive and negative schemes corresponds to the automorphism of

superconformal algebra, and this observation will be helpful for us for the analysis of the nonlinearly

extended super-Schrödinger structures. Here, actually, each of the (#f − 2)/2 pairs of fermionic

operators distinct from supercharges provides a possible dynamical extension of the super-Poincaré

symmetry. As we will see, all of them are necessary to obtain a closed nonlinear spectrum-generating

superalgebra of the super-extended system.

To construct any extension of the deformed Poincaré supersymmetry, we calculate {Q0
a,Qza}, in

the negative scheme, or {Q′0a ,Q
′z
a } in the positive one. In the �rst case we have

{Q0
a,Qzb} = δab(G(2θ(z)−1)

−z + G(2θ(z)−1)
+z ) + iεab(G(2θ(z)−1)

−z − G(2θ(z)−1)
+z ) , (6.3.3)

where z ∈ (−N, 0) ∪ (0, 2N), θ(z) = 1 (0) for z > 0 (z < 0), and G(2θ(z)−1)
±z are given by

G(2θ(z)−1)
+z =

 S0(Sz)
† 0

0 (Sz)
†S0

 , G(2θ(z)−1)
−z = (G(2θ(z)−1)

+z )† . (6.3.4)

Following de�nition (6.2.7), one �nds directly that S0(Sz)
† is equal to A−|z| when −N < z < 0,

while for 0 < z ≤ n+, this operator is equal to A+
z , and takes the form of C+

z for n+ < z < 2N .
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The operators (Sz)
†S0 reduce to

(Sz)
†S0 =



Pn−(L− 2k)(a−)|z| , −N < z < 0 ,

(a+)zPn−(L) , 0 < z ≤ n+ ,

(−1)n−(a+)zTN−z(L+ 2N) , n+ < z < N ,

(−1)n−(a+)z , N ≤ z < 2N .

(6.3.5)

Note that G(−1)
±k and G(+1)

±k with k = |z| ≤ n− are two di�erent matrix extensions of the same

operator A±k .

For a super-extended system based on the positive scheme, we obtain

{Q
′0
a ,Q

′z
b } = δab(G

′(2θ(z)−1)
−z + G

′(2θ(z)−1)
+z )− iεab(G

′(2θ(z)−1)
−z − G

′(2θ(z)−1)
+z ) , (6.3.6)

where, again, z ∈ (−N, 0) ∪ (0, 2N), and G
′(2θ(z)−1)
±z are given by

G
′(2θ(z)−1)
−z =

 S′0(S′z)
† 0

0 (S′z)
†S′0

 , G
′(2θ(z)−1)
+z = (G

′(2θ(z)−1)
−z )† . (6.3.7)

Now, S′0(S′z)
† = B+

|z| when −N < z < 0, while for positive index z this operator reduces to B−z

when 0 < z ≤ n−, and to C−z when n− < z < 2N . For the other matrix element we have

(S′z)
†S′0 =



(a+)|z|Pn+
(L) , −N < z < 0 ,

(a−)zPn+
(L) , 0 < z ≤ n− ,

(−1)n−TN−k(L)(a−)z , n− < z < N ,

(−1)n−(a−)z , N < z < 2N .

(6.3.8)

Here, again, there are two di�erent matrix extensions of the operators of the B-family given by

G
′(+1)
±k and G

′(−1)
±k when k ≤ n−.

By comparing both schemes one can note two other special features. It turns out that G(1)
±k =

G
′(1)
±k when k ≥ N , and this corresponds to the automorphism discussed in section 2.2. In the same

way, for max(n−, n+) < k < N , operators G(1)
±k and G

′(1)
±k are di�erent matrix extensions of C±k .

From here and in what follows we do not specify whether we have the super-extended system

corresponding to the negative or the positive scheme, and will just use, respectively, the unprimed

or primed notations for operators of the alternative dual schemes. In particular, we have

[H,G(2θ(z)−1)
±k ] = ±2kG(2θ(z)−1)

±k , k ≡ |z| , z ∈ (−N, 0) ∪ (0, 2N) , (6.3.9)
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that shows explicitly that our new bosonic operators have the nature of ladder operators of the

super-extended system H. Commutators [G(1)
−k,G

(1)
+k ] and [G(−1)

−k ,G(−1)
+k ] produce polynomials in H

and σ3, which can be calculated by using the polynomials Pρ,j de�ned in (6.2.3). The algebra

generated by H, G(2θ(z)−1)
±k and σ3 is identi�ed as a deformation of sl(2,R)⊕ u(1), where a concrete

form of deformation depends on the system, H, and on z. Each of these nonlinear bosonic algebras

expands further up to a certain closed nonlinear deformation of superconformal osp(2|2) algebra

generated by the subset of operators

U (2θ(z)−1)
0,z ≡ {H, σ3, I,G(2θ(z)−1)

±|z| ,Q0
a,Qza} , z ∈ (−N, 0) ∪ (0, 2N) , (6.3.10)

see Appendix C.3.

The de�ciency of any of these nonlinear superalgebras is that none of them is a spectrum-

generating algebra for the super-extended system : application of operators from the set (6.3.10)

and of their products does not allow one to connect two arbitrary eigenstates in the spectrum of

H. To �nd the spectrum-generating superalgebra for this kind of the super-extended systems, one

can try to include into the superalgebra simultaneously the operators G(1)
±N and, say, G(1)

±1 or G(−1)
±1 .

The operators G(1)
±N provide us with matrix extension of the operators C±N being ladder operators

for deformed subsystems L(−) or L(+). Analogously, operators G
(1)
±1 or G(−1)

±1 supply us with matrix

extensions of the ladder operators A±1 or B±1 (A±2 or B±2 ) when systems L(±) are of the class c = 1

or c = 2 with even (odd) N . Therefore, it is enough to unify the sets of generators U (1)
0,1 and U (1)

0,N .

Having in mind the commutation relations between operators of the three families A, B and C, one

can �nd, however, that the commutators of the operators G(1)
±N with G(1)

±1 generate other bosonic

matrix operators G(1)
±k. The commutation of these operators with supercharges Q0

a generates the

rest of the fermionic operators we considered, see Appendix C.3 for details. The set of higher order

generators is completed by considering all non-reducible bosonic and fermionic generators, which

do not decompose into the products of other generators. In correspondence with that was noted

above, we arrive �nally at two di�erent extensions of the sets of operators with index less than N .

By this reason it is convenient also to introduce the operators

G(0)
±k ≡ Π−(a±)k, k = 1, . . . , N − 1, Π− = 1

2 (1− σ3) , (6.3.11)

which help us to �x in a unique way the bosonic set of generators. For our purposes we choose

to write all the operators G(−1)
±k in terms of G(1)

±k and G(0)
±k when k ≤ n+ in the negative scheme,

and when k ≤ n− in the extended system associated with the positive scheme. For indexes outside

the indicated scheme-dependent range, we neglect operators G(−1)
±k because they are not basic in

correspondence with the discussion on reduction of ladder operators in the previous Sec. 6.2. As a

result, we have to drop from (6.3.10) all the operators G(2θ(z)−1)
±|z| with z ∈ (−N, 0).
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By taking anti-commutators of fermionic operators QNa with Qza, z 6= 0, we produce bosonic

dynamical integrals J (1−2θ(z−N))
±|z−N | , which have exactly the same structure of the even generators

G′(2θ(z)−1)
±|z| in the extension associated with the dual scheme. In this way we obtain the subsets of

operators

I(1−2θ(z−N))
N,z ≡ {H, σ3, I,J (1−2θ(z−N))

±|z−N | ,QNa ,Qza} z ∈ (−N, 0) ∪ (0, 2N) , (6.3.12)

which also generate closed nonlinear super-algerabraic structures. With the help of (6.3.11), we

�nd similarly to the subsets (6.3.10), that a part of the sets (8.1.16) also can be reduced.

Having in mind the ordering relation between n− and n+, the super-extended systems associated

with the negative schemes can be characterized �nally by the following irreducible, in the sense of

subection 6.2, subsets of symmetry generators :

n− ≤ n+ n+ < n−

U (1)
0,k , 0 < k < 2N U (1)

0,k , k ∈ (0, n+) ∪ (n−, 2N)

I(1−2θ(N−z))
N,z , z ∈ (−N, 0) ∪ (n+, N) I(1−2θ(N−z))

N,z , z ∈ (−N, 0) ∪ [n+, N)

Table 6.1: Symmetry generators subset.

For more details, see Appendix C.2. A similar result can be obtained for super-extended systems

associated with positive schemes, where the roles played by families A and B, and of numbers n−

and n+ are interchanged.

Finally, we arrive at the following picture. Any operator that can be generated via (anti)-

commutation relations and which does not belong to the sub-sets appearing in Table 6.1, can be

written as a product of the basic generators. For super-extensions of rationally deformed one-gap

harmonic oscillator systems we have considered, the spectrum-generating algebra is composed from

the sets U (1)
0,k and I(1−2θ(N−z))

N,z and from those operators generated by them via (anti)-commutation

relations which cannot be written as a product of the basic generators. It is worth to stress

that in this set of generators the unique true integrals of motion, in addition to H and σ3, are

the supercharges Q0
a, while the rest has to be promoted to the dynamical integrals by unitary

transforming them with the evolution operator.

For gapless rational extensions of the systems of class c = 2, only the subset U (1)
0,2 has to be

considered instead of the family of sets U (1)
0,k . For super-extensions of rationally deformed systems

of arbitrary form in the sense of the class c and arbitrary number of gaps and their dimensions,

the identi�cation of their generalized super-Schrödinger or superconformal structures is realized in

a similar way. The procedure is based on the sets of operators (8.2.6) and (6.2.6), which include

the operators (6.2.5) and (6.2.7) of the discussed one-gap case as subsets. As a result, for every

irreducible pair of ladder operators (8.2.6) with index less than N we have two super-extensions
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which are related by operators of the form (6.3.11). When we put together the subsets containing

the spectrum-generating set of operators, we obtain all the other structures.

We would like to end this section highlighting some of the peculiarities of the simplest systems

that can be treated with this machinery and these are

Peculiarities of one-gap deformations of the QHO : The super-extended Hamiltonian constructed

on the base of the negative scheme with n− = 1 is characterized by unbroken N = 2 Poincaré

supersymmetry, whose supercharges, being the �rst order di�erential operators, generate a Lie

superalgebra. The B family of ladder operators in the sense of (6.2.5) does not play any role in

this scheme. On the other hand, the super-Hamiltonian provided by the positive scheme possesses

n+ singlet states while the ground state is a doublet. The N = 2 super-Poincaré algebra of such a

system is nonlinear as its supercharges are of di�erential order n+ = 2` ≥ 2.

Peculiarities of gapless deformations of L1 : The negative scheme produces a super-Hamiltonian

with spontaneously broken supersymmetry, whose all energy levels are doubly degenerate; its N = 2

super-Poincaré algebra has linear nature. To construct the spectrum-generating algebra we only

need a matrix extension of the operators A±2 . In a super-extended system produced by the positive

scheme, n+ > 1 physical and nonphysical states of L0 of positive energy (the latter being even

eigenstates of harmonic oscillator) are used as seed states for DCKA transformation. Its supersym-

metry is spontaneously broken, and the N = 2 super-Poincaré algebra is nonlinear. The nonlinearly

deformed super-Poincaré symmetry cannot be expanded to spectrum-generating superalgebra by

combining it with matrix extension of the A±2 , but this can be done by using matrix extensions of

the B±2 or C±2 ladder operators, see (6.3.7). The resulting spectrum-generating superalgebra is a

certain nonlinear deformation of the osp(2|2) superconformal symmetry.

6.4 Example 1: Gapless deformation of AFF model

The example considered here corresponds to the same system analyzed in the previous chapter, in

Sec. 5.2. By construction, the super-Hamiltonian and its spectrum correspond to

H =

 H1 0

0 H0

 , En = 4n+ 10 , n = 0, 1, . . . , (6.4.1)

where H1 = L(−) + 7, with L(−) given in (5.2.1), and H0 = L0 + 7. Due to complete isospectrality

of H1 and H0, all the energy levels of the system (6.4.1) including the lowest one E0 = 10 > 0

are doubly degenerate and we have here the case of spontaneously broken N = 2 super-Poincaré

symmetry generated by Hamiltonian H, the supercharges Q0
a constructed in terms of A±(−), and by

Σ = 1
2σ3.
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The generators that should be considered for the super-extension correspond to

U (1)
0,2 = {H, I,G(1)

±2 , σ3,Q0
a,Q2

a} , (6.4.2)

where

Qz1 =

 0 A−(−)(a
−)z

(a+)zA+
(−) 0

 , z = 0, 2 , (6.4.3)

G(1)
−2 =

 A−(−)(a
−)2A+

(−) 0

0 H0(a−)2

 , (6.4.4)

Qz2 = iσ3Qz1 , G(1)
+2 = (G(1)

−2)† , (6.4.5)

and the explisit form of A±(−) is given in (5.2.3). The complete set of superalgebraic relations they

satisfy is

[H,Q0
a] = 0 , [H,Q2

a] = 4iεabQ2
b , [σ3,Qza] = −2iεabQzb , z = 0, 2 , (6.4.6)

{Q0
a,Q0

a} = 2δabH , {Q0
a,Q2

b} = δab(G(1)
−2 + G(1)

+2 ) + iεab(G(1)
−2 − G

(1)
+2 ) , (6.4.7)

[H,G(1)
±2 ] = ±4G(1)

±2 , [G(1)
∓2 ,Q0

a] = ±2(Q2
a ∓ iεabQ2

b) , (6.4.8)

[G(1)
−2 ,G

(1)
+2 ] = 8(H− 4)(H(2H− 9) + Π−(H2 − 4H+ 24)) , (6.4.9)

[G(1)
∓2 ,Q2

a] = ±2(−80 + 4H+H2)(Q0
a ± iεabQ0

b) , (6.4.10)

{Q2
a,Q2

b} = 2δab(η + 1)(η + 3)(η + 7)|η=H+2σ3−9 , (6.4.11)

where Π− = 1
2 (1− σ3). The common eigenstates of H and Q0

1 are

Ψ+
n =

 (En)−1/2A−(−)ψ2n+1

ψ2n+1

 , Ψ−n = σ3Ψ+
n , (6.4.12)

where Q0
1Ψ±n = ±

√
EnΨ±n , and we have here the relations Ψ±n = (G(1)

+2 )nΨ±0 and G(1)
−2Ψ±0 = 0. As a

result one can generate all the complete set of eigenstates of the system by applying the generators

of superalgebra to any of the two ground states Ψ+
0 or Ψ−0 , and therefore the restricted set of

generators we have chosen is the complete spectrum-generating set for the super-extended system

(6.4.1).

The complete set of (anti)-commutation relations (6.4.8)-(6.4.11) corresponds to a nonlinear

deformation of superconformal algebra osp(2|2). The �rst relation from (6.4.8) and equation (6.4.9)

represent a nonlinear deformation of sl(2,R) with commutator [G(1)
−2 ,G

(1)
+2 ] to be a cubic polynomial

in H. From the superalgebraic relations it follows that like in the linear case of superconformal

osp(2|2) symmetry discussed in Chap 2, Sec. 2.2, here the extension of the set of generators H, Q0
a
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and Σ of the N = 2 Poincaré super-symmetry by any one of the dynamical integrals Q2
a, a = 1, 2,

G(1)
+2 or G(1)

−2 recovers all the complete set of generators of the nonlinearly deformed superconformal

osp(2|2) symmetry.

Due to a gapless deformation of the AFF model, here similarly to the case of the non-deformed

superconformal osp(2|2) symmetry, the super-extension based on the positive scheme is character-

ized by essentially di�erent physical properties. The positive scheme of the system corresponds to

the states(1, 2, 3) and in this case we identify H′ = diag (L(+)− 3, L0− 3) as the extended Hamilto-

nian. This H′ is related to H de�ned by Eq. (6.4.1) by the equality H′ = H−6+4σ3. For extended

system H′, supercharges Q′0a have the form similar to Q0
a in (6.4.3) but with A±(−) changed for the

third order intertwining operators A±(+), constructed with the formula (1.2.5). Being di�erential

operators of the third order, they satisfy relations [H′,Q′0a] = 0 and {Q′0a,Q′
0
b} = 2δabPn+(H′ + 3)

with Pn+
(H′ + 3) = H′(H′ − 2)(H′ − 4). The linear N = 2 super-Poincaré algebra of the sys-

tem (6.4.1) is changed here for the nonlinearly deformed superalgebra with anti-commutator to be

polynomial of the third order in Hamiltonian. This system has two nondegenerate states (0, ψ1)t

and (0, ψ3)t of energies, respectively, 0 and 4, and both them are annihilated by both supercharges

Q′0a. All higher energy levels E ′n = 4n with n = 2, 3, . . . are doubly degenerate. Thus, the non-

linearly deformed N = 2 super-Poincaré symmetry of this system can be identi�ed as partially

unbroken [Klishevich and Plyushchay (2001)] since the supercharges have di�erential order three

but annihilate only two nondegenerate physical states. Here instead of the spectrum-generating

set U (1)
0,2 , formed by true and dynamical integrals, the same role is played by the set of integrals

U ′(1)
0,2 = {H′,G′(1)

±2 , I, σ3,Q′0a,Q′
2
a}, where fermionic generators are Q′za = Q4−z

a with z = 0, 2 accord-

ing with (6.2.7) and (6.3.1). Bosonic dynamical integrals G′(1)
±2 are given here by

G′(1)
−2 =

 A−(+)(a
+)A+

(−) 0

0 (L0 − 1)(a−)2

 , G′(1)
+2 = (G′(1)

−2 )† , (6.4.13)

where equations in (6.3.7) have been used for the case of the present positive scheme. They are

generated via anticommutation of Q′0a with Q′
2
b . The set of operators U

′(1)
0,2 generates the nonlinearly

deformed superconformal osp(2|2) symmetry given by superalgebra of the form (6.4.6)�(6.4.11), but

with coe�cients to be polynomials of higher order in Hamiltonian H′ in comparison with the case

of the system (6.4.1).

6.5 Example 2: Rationally extended harmonic oscillator

The example we discuss in this subsection corresponds to the rational extension of QHO based on

the dual schemes (1, 2) ∼ (−2), for which N = 3. Di�erent aspects of this system were extensively

studied in literature [Cariñena and Plyushchay (2017); Cariñena et al. (2018)]. Here, we investigate
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it in the light of the nonlinearly extended super-Schrödingerr symmetry.

The Hamiltonian produced via Darboux transformation based on the negative scheme is

L(−) = − d2

dx2
+ x2 + 8

2x2 − 1

(1 + 2x2)2
− 2 , (6.5.1)

whose spectrum is E0 = −5, En+1 = 2n+ 1, n = 0, 1, . . .. In this system a gap of size 6 separates

the ground state energy from the equidistant part of the spectrum, where levels are separated from

each other by a distance ∆E = 2. The pair of ladder operators of the C-family connects here

the isolated ground state with the equidistant part of the spectrum, and together with the ladder

operators A±1 they form the complete spectrum-generating set of operators for the system. The

intertwining operators of the negative scheme are

A−(−) =
d

dx
− x− 4x

2x2 + 1
, A+

(−) ≡ (A−(−))
† . (6.5.2)

We also have the intertwining operators A±(+) constructed on the base of the seed states of the

positive scheme (1, 2). These four operators satisfy their respective intertwining relations of the form

(6.1.2), and their alternate products (6.1.5) reduce here to polynomials Pn−(L(−)) = L(−) +5 ≡ H1,

Pn−(L) = L+5 ≡ H0 and Pn+
(L(+)) = (L(+)−3)(L(+)−5), Pn+

(L) = (L+3)(L+5), where L = Los

is the Hamiltonian operator of the harmonic oscillator, and L(+) is the Hamiltonian produced by

positive scheme, which is related with L(−), according to (5.1.4), by L(+) − L(−) = 6. Here, the

eigenstate A−(−)ψ̃−2 = 1/ψ−2 is the isolated ground state of zero energy of the shifted Hamiltonian

operator H1.

The super-extended Hamiltonian and its spectrum are

H =

 H1 0

0 H0

 , E0 = 0 , En+1 = 2n+ 6 , n = 0, 1, . . . . (6.5.3)

The ground state of zero energy is non-degenerate and corresponds to the ground state (A−(−2)ψ̃−2, 0)t.

Other energy levels are doubly degenerate and correspond to eigenstates of the extended Hamilto-

nian (6.5.3) and supercharge Q0
1, see below :

Ψ+
n+1 =

 (En+1)−1/2A−(−)ψn

ψn

 , Ψ−n+1 = σ3Ψ+
n+1 . (6.5.4)

The system (6.5.3) is characterized by unbroken N = 2 Poincaré supersymmetry. Now we use

the construction of Sec. 6.3 to produce generators of the extended nonlinearly deformed super-

Schrödinger symmetry of the system. Following (6.3.1) and (6.3.4), we construct the odd operators

Qza with z = −2,−1, 0, . . . , 5, and matrix bosonic ladder operators G(1)
±k with k = 1, . . . , 5. Also we
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must consider the operators G(0)
±k with k = 1, 2 de�ned in (6.3.11). To obtain all the ingredients,

we have to use the version of relation (C.2.5) for this system translated to the supersymmetric

extension of C±N+k which is

G(1)
±(3l+n) = (−G(1)

±3)lG(1)
±n , n = 3, 4, 5 , l = 0, 1, . . . . (6.5.5)

Then we generate the even part of the superalgebra :

[H,G(1)
±n] = ±2nG(1)

±n , [H,G(0)
±l ] = ±2lG(0)

±l , (6.5.6)

[G(1)
α ,G(1)

β ] = Pα,βG(1)
α+β +Mα,βG(0)

α+β , α, β = ±1, . . . ,±5 , (6.5.7)

[G(0)
α ,G(1)

β ] = Π−(Fα,βG(1)
α+β +Nα,βG(0)

α+β) , α = 1, 2 , β = ±1, . . . ,±5 , (6.5.8)

[G(0)
−1 ,G

(0)
+1 ] = 2Π−, [G(0)

±1 ,G
(0)
∓2 ] = ±6G(0)

±1 , [G(0)
−2 ,G

(0)
+2 ] = 8Π−(H− 5) , (6.5.9)

where we put G(1)
0 = G(0)

0 = 1 and Pα,β , Fα,β , Mα,β and Nα,β are some polynomials in H and

Π− = 1
2 (1−σ3), some of which are numerical coe�cients, whose explicit form is listed in Appendix

C.4. We note that in Eqs. (6.5.7) and (6.5.8), the operators G(1)
±n with 1 < n ≤ 7 can appear,

where for n > 5 we use relation (6.5.5) (admitting G(0)
±3 as coe�cients in the algebra). Additionally

we note that the operators G(0)
±m with m > 2 in both equations where they appear are absorbed in

generators G(1)
±m.

For eigenstates we have the relations

Ψ±3j+k = (G(1)
+3 )jΨ±k , Ψ0 = G(1)

−3Ψ±1 , j = 1, 2, . . . , k = 1, 2, 3 , (6.5.10)

Ψ±j = (G(1)
+1 )jΨ±1 , G(1)

±1Ψ0 = G(1)
−1Ψ±1 = 0 . (6.5.11)

Eq. (6.5.10) shows that we can connect the isolated ground state with the equidistant part of the

spectrum using G(1)
±3 , which are not spectrum-generating operators. Eq. (6.5.11) indicates that

the states in the equidistant part of the spectrum can be connected by G(1)
±1 , but this part of the

spectrum cannot be connected by them with the ground state. Thus we have to use a combination

of both pairs of these operators. On the other hand, the odd operators Qza satisfy relations (6.3.2),

where P0 = H, and, therefore, we have again the linear N = 2 Poincaré supersymmetry as a

sub-superalgebra generated by H, Q0
a and Σ. The general anti-commutation structure is given by

{Qna ,Qmb } = δab(Cnm + (Cnm)†) + iεab(Cnm − (Cnm)†) , (6.5.12)

where Cn,m = Cn,m(G(1)
|n−m|,G

(0)
|n−m|) in general are some linear combinations of the indicated lad-

der operators with coe�cients to be polynomials in H, G(0)
±3 and σ3. Some of these relations de�ne
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ladder operators, see Eq. (6.3.3). For n = N = 3 and m = −1,−2 we can use (6.3.7) knowing that

Q′za = Q3−z
a , see Sec. 6.3. For structure of anti-commutation relations with other combinations

of indexes, see Appendix C.4. To complete the description of the generated nonlinear supersym-

metric structure, we write down the commutators between the independent lowering operators and

supercharges :

[G(1)
−m,Qna ] = Q1

m,n(Qn−ma + iεabQn−mb ) + Q2
m,n(Qm+n

a − iεabQm+n
b ) , (6.5.13)

[G(0)
−m,Qna ] = G1

m,n(Qn−ma + iεabQn−mb ) + G2
m,n(Qm+n

a − iεabQm+n
b ) . (6.5.14)

Here Qjm,n and Gjm,n with j = 1, 2 are polynomials in H or numerical coe�cients, some of which are

listed in the sets of general commutation relations in Appendix C.3, while other are given explicitly

in Appendix C.4. As the odd fermionic operators are Hermitian, then [G(1)
+m,Qza] = −([G(1)

−m,Qza])†,

and we do not write them explicitly. In matrix language, Eq. (6.5.13) can be written as

[G(1)
−m,Qna ] =

 0 S−n+m

S+
n−m 0

 , (6.5.15)

and an important point here is that the number n−m could take values less than -2 and n+m could

be greater than 5, but fermionic operators are de�ned with the index z taking integer values in the

interval I = [−2,+5]. It is necessary to remember that we cut the series of S±z because operators

outside the de�ned interval are reduced to combinations (products) of other basic operators. In this

way, we formally apply the de�nition of S±z outside of the indicated interval and use the relation

in Appendix C.2 to show that these �new� generated operators reduce to combinations of operators

with index values in the interval I and of the generators C±3.

Finally, the subsets which produce closed sub-superalgebras here are those de�ned by U (1)
0,z in

(6.3.10), with z = 1, . . . , 5 in addition to I(1)
N,−k given in (8.1.16) with k = 1, 2.

With respect to the positive scheme, the super-Hamiltonian is given by H′ = diag (L(+)−3, L0−

3). It has two positive energy singlet states of the form (0, ψn) with n = 1, 2; besides, there are two

ground states Ψ+
0 = (φ0, ψ0) and Ψ−0 = σ3Ψ+

0 of energy −2. According to the construction from

the previous section, the fermionic operators here are Q′za = Q3−z
a , and the basic subsets which

generate closed sub-superalgebras are U ′(1)
0,k and I ′(1−2θ(l))

N,l with k = 3, 4, 5 and l = −1,−2, 4, 5.

One can note that considering G(1)
±3 as coe�cients, the subset {H,G(1)

±3 , σ3,Q−2
a ,Q1

a,Q4
a, I} also

generates a closed nonlinear superalgebraic structure.
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6.6 Remarks

In fact, the construction in Sec. 6.3 o�ers more possibilities: in principle, the choice of the constant

λ∗ in the Hamiltonian (1.2.8) can be modi�ed in such a way that another pair of fermionic operators

in the scheme 6.3.1 will be the true integrals of the motion. As a result, the super-extended system

will have a di�erent spectrum. We schematically discussed this picture in the original work [Inzunza

and Plyushchay (2019a)]. Another possibility is to choose L0 = L(−) and L[n] = L(+) and, as a

consequence, the intertwining operators will be the ladder operators in (8.2.6), and one can expect

that the use of intermediate systems in the DCKA procedure will provide lower order intertwining

operators, however this is still an open problem.

Finally, the discussion in these last two chapters involved AFF models with integer coupling

constant m(m+ 1), so the next natural step is to try to generalize for the case ν(ν + 1) with ν real

equal to or greater than −1/2. This is the objective of the next chapter.
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Chapter 7

The Klein four-group and Darboux

duality

The invariance of the QHO eigenvalue problem to the discrete transformation (x,E) → (ix,−E)

was the basis of the construction presented in the last two chapters. The presence of nonphysical

eigenstates gives rise to the so-called Darboux duality, which was the key to building the spectrum-

generating ladder operators for extended rational systems. In this chapter we demonstrate that

the Schrödinger equation for the AFF model with ν ≥ −1/2 has an even larger discrete symmetry

group, which will be responsible for the generalization of Darboux duality for these systems. Such

a discrete group has its particular consequences when it acts on eigenstates and (super) symmetry

generators.

With the generalization of the Darboux duality at hand, constructing spectrum-generating

ladder operators for rational deformations of the general AFF models, as well as their nonlinear

algebras, is straightforward. It is interesting to recall that when ν is a half-integer number, the

Jordan states associated with con�uent Darboux transformations naturally enter in the framework.

In particular, some deformed systems undergo structural changes when we set ν = `−1/2 with ` =

0, 1 . . . . The results contained in this chapter were reported in our work [Inzunza and Plyushchay

(2019b)].

7.1 The Klein four-group in AFF model

Parameterizing the coupling constant in parabolic form g = ν(ν + 1), which is symmetric with

respect to ν = − 1
2 , we arti�cially induce the invariance of the equation

(
− ∂2

∂x2
+ x2 +

ν(ν + 1)

x2

)
ψ = i

∂

∂t
ψ (7.1.1)
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with respect to the transformation ρ1 : ν → −ν−1. Equation (7.7.1) is also invariant with respect to

the transformation ρ2 : (x, t)→ (ix,−t). These two transformations generate the Klein four-group

as a symmetry of equation (7.7.1): K4 ' Z2 × Z2 = (1, ρ1, ρ2, ρ1ρ2 = ρ2ρ1), where each element

is its own inverse. At the level of the stationary Schrödinger equation, the action of ρ2 reduces

to the transformation ρ2 : (x,Eν,n) → (ix,−Eν,n), which means that ρ2 is a completely broken

Z2 symmetry, for which the transformed eigenstates ρ2(ψν,n) = ψν,n(ix) with eigenvalues −Eν,n
are nonphysical solutions. The transformation ρ1 at the same level of the stationary Schrödinger

equation implies that the energy eigenvalues change as Eν,n → ρ1(Eν,n) = E−ν−1,n = 4n− 2ν + 1.

The di�erence between the original energy level and the transformed one is Eν,n − E−ν−1,n =

∆E · (ν + 1/2), where ∆E = 4 is the distance between two consecutive levels. So, if we take

ν = ` − 1/2 with ` = 0, 1, . . ., we obtain ρ1(E`−1/2,n) = E`−1/2,n−`, and �nd that physical energy

levels with n ≥ ` are transformed into physical energy levels but lowered by 4`. Under the action

of ρ1, the eigenstates in (4.1.3) are transformed into the functions

ρ1(ψν,n) =
√

n!
Γ(n−ν+1/2)x

−νL
(−ν−1/2)
n (x2)e−x

2/2 := ψ−ν−1,n . (7.1.2)

In the case of ν 6= ` − 1/2, functions (7.1.2) do not satisfy boundary condition at x = 0 because

of the presence of the factor x−ν , and they are nonphysical, formal eigenstates of Hν . The case of

ν = `− 1/2 requires, however, a separate consideration. To analyze this case, we observe that

ρ1(ψ`−1/2,n) =
√

n!
Γ(n−`+1)x

−`+1/2L
(−`)
n (x2)e−x

2/2 . (7.1.3)

Due to the poles of Gamma function, this expression vanishes when n < `, i.e., ρ1 annihilates the

�rst ` eigenstates of the system. On the other hand, the identity

(−η)m

m!
L(m−n)
n (η) =

(−η)n

n!
L(n−m)
m (η) , (7.1.4)

with integerm and n, which follows from (2.1.27), allows us to write ρ1(ψ`−1/2,n) = (−1)`ψ`−1/2,n−`

when n ≥ `, and this is coherent with the change of the energy eigenvalues under application to

them of transformation ρ1. In conclusion, ρ1 corresponds to a symmetry which is just the identity

operator when ` = 0, while for ` ≥ 1 this symmetry annihilates the ` lowest physical eigenstates,

but restores them by acting on the higher eigenstates 1. From this point of view, in the case of half-

integer ν, transformation ρ1 does not produce anything new. Nevertheless, we can also construct a

1This is similar to a picture of a Hilbert's hotel under departure of clients from �rst ` rooms with numbers
n = 0, . . . , `−1 with simultaneous translation of the clients from rooms with numbers n = `, `+1, . . ., into the rooms
with numbers n − `. Note that the power (C−ν )` of lowering generator of conformal symmetry with ν = ` − 1

2
acts

on physical eigenstates in a way similar to ρ1, but violating normalization of the states.
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�nite set of nonphysical solutions of the same nonphysical nature as in (7.1.2) given by the functions

ψ−`−1/2,k := ρ1

(√
Γ(k+l+1)

k! ψ`−1/2,k

)
= x−`+1/2L

(−`)
n (x2)e−x

2/2, k = 0, . . . , `− 1, (7.1.5)

singular at x = 0, whose corresponding eigenvalues are E−`−1/2,n = 4n− 2`+ 2.

We note that the combined transformation ρ1ρ2(ψν,n) always produces nonphysical solutions

for all values of ν due to the presence of ρ2. Wave eigenfunctions transformed by the K4 generators

ρ2 and ρ1ρ2 diverge exponentially at in�nity, and for the following consideration it is convenient to

introduce a special common notation for them: ψr(ν),n(x), with r(ν) = −ν − 1 for functions that

vanish at in�nity and ψr(ν),−n(x) = ψr(ν),n(ix) for functions that diverge when x→∞. In the case

of ν = ` − 1/2, ` ≥ 1, we have E−`−1/2,`−n−1 = −E−`−1/2,n for n < `, and one �nds that (7.1.5)

and their partners in the sense of Eq. (1.1.7) are related with nonphysical eigenstates produced by

ρ2 and their partners,

ψ−`−1/2,`−1−n ∝ ψ̃−`−1/2,−n , ψ̃−`−1/2,n ∝ ψ−`−1/2,−`+1−n . (7.1.6)

Now, let us study the quantum conformal symmetry of the AFF model from the perspective

of the discrete Klein four-group. Keep in mind that under these transformations, sl(2,R) ladder

operators C±ν introduced in (4.1.6) change as

ρ1(C±ν ) = C±ν , ρ2(C±ν ) = ρ3(C±ν ) = −C∓ν , (7.1.7)

so what we have here is a group of automorphisms of the conformal algebra. Knowing that C−ν
annihilates the ground state, we can use the K4 group to obtain the kernels of C±ν in the case

ν ≥ −1/2,

ker C−ν = span {ψν,0, ψ−ν−1,0} , ker C+
ν = span {ψν,−0, ψ−ν−1,−0} . (7.1.8)

For ν = −1/2, the kernels of C±−1/2 are similar to (7.1.8) but with the states ψ−ν−1,0 and ψ−ν−1,−0

are replaced, respectively, by the Jordan states

Ω−1/2,0 =
(
a− 1

2 lnx
)
ψ−1/2,0 , Ω−1/2,−0 =

(
b− 1

2 lnx
)
ψ−1/2,−0 , (7.1.9)

where a and b are constants.

In the context of the Darboux transformations, the equations in (7.1.8) indicate that the second

order di�erential operators −C±ν are generated by the choice of the seed states (ψν,∓0, ψ−ν−1,±0),
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and by means of Eq. (1.2.4) we can write the equalities

C∓ν φr(ν),z = −
W (ψν,±0, ψ−ν−1,±0, φr(ν),z)

W (ψν,±0, ψ−ν−1,±0)
, (7.1.10)

where φr(ν),z with z = ±n, n ∈ N, corresponds to an eigenstate or a Jordan state of Lν . The

Wronskian form of these equalities is useful to �nd the action of the ladder operators on the states

ψ̃r(ν),±0 and Ω̆−1/2,0. Using some Wronskian identities from the Appendix A, speci�cally the Eqs.

(A.1.2) and (A.1.4), as wells as the relations

W (ψν,±0, ψ−ν−1,±0) = −(2ν + 1)e∓x
2

, W (ψ−1/2,±0,Ω−1/2,±0) = e∓x
2

, (7.1.11)

one can �nd that

C−ν ψ̃r(ν),0 ∝ ψr(−ν−1),−0 , C+
ν ψ̃r(ν),−0 ∝ ψr(−ν−1),0 , (7.1.12)

C∓−1/2ψ̃−1/2,±0 ∝ Ω−1/2,∓0 , C∓−1/2Ω̆−1/2,±0 ∝ ψ−1/2,∓0 . (7.1.13)

So far, we realize that the states of Jordan should play some role in the case of half-integer ν,

however, let us �rst consider the general case. For this, we use (1.3.5) and the sl(2,R) algebra to

prove the relations

Ωr(ν),±n ∝ (C±ν )nΩr(ν),±0 , Ω̆r(ν),±n ∝ (C±ν )nΩ̆r(ν),±0 . (7.1.14)

Thus, the ladder operators act in a similar way as they act on eigenstates of Lν , but with a di�erence

when n = 0. When ν 6= −1/2, we obtain the relations C±ν Ωr(ν),∓0 ∝ ψ̃r(−ν−1),±0 and C±ν Ω̆r(ν),∓0 ∝

Ωr(−ν−1),±0. Due to (7.1.6) one can make the identi�cation Ω̆−`−1/2,±0 = Ω−`−1/2,∓(`−1), so in the

half-integer case ν = `− 1/2 with ` ≥ 1 we obtain

C±`−1/2Ω`−1/2,∓0 ∝ ψ−`−1/2,∓(`−1) , C±`−1/2Ω−`−1/2,∓0 ∝ ψ`−1/2,∓(`−1) . (7.1.15)

Acting on these relations by (C±`−1/2)`, we obtain zero, and conclude that

ker(C±`−1/2)`+k = span{ψ`−1/2,∓0, . . . , ψ`−1/2,∓(`+k−1), ψ−(`−1/2)−1,∓0, . . . ,

ψ−(`−1/2)−1,∓(`−1),Ω`−1/2,∓0, . . . ,Ω`−1/2,∓(k−1)}
(7.1.16)

for k = 1, 2, . . .. The whole picture is summarized in Figure 7.1.
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Figure 7.1: The action of the ladder operators in dependence on the value of ν. Diagram a) illustrates
the case of half-integer ν = ` − 1/2 with ` = 1, . . . , where it is shown how Jordan states can be related
to eigenstates by the action of C±ν . Diagram b) corresponds to non-half-integer values of ν. In c), it is
indicated how the case with ν = −1/2 can be obtained from b) by changing the corresponding states. The
shapes with borders highlighted in blue (red) represent the states annihilated by C−ν (C+

ν ).

7.2 Superconformal symmetry and the Klein four-group

Here, we inspect the action of the Klein four-group on a supersymmetric extension of the AFF

model. To do so, we must pay attention to the intertwining operators A±ν and B±ν introduced in

Chap. 2, Eqs. (2.2.1) and (2.2.6) (with ω = 1). Acting on them, the group produces

ρ1(A∓ν ) = −B±ν−1 , ρ1(B∓ν ) = −A±ν−1 , (7.2.1)

ρ2(A±ν ) = −iB±ν , ρ2(B±ν ) = −iA±ν . (7.2.2)

These relations are valid for ν > −1/2, while for ν = −1/2 the transformation ρ1 reduces to the

identity.

The symmetry generators of the super-extended AFF model, namely {Heν ,Rν , C±ν ,Qaν ,Sbν}, were

de�ned in Eqs. (2.2.4), (2.2.10), (2.2.11) and (2.2.15). The basic blocks to construct these objects

are the intertwining operators A±ν and B±ν , so the role of the Klein four-group at the supersymmetric

level is at hand. Nevertheless, before to apply the relations (7.2.1)-(7.2.2) in the supersymmetric

generators, it is convenient to remember that the corresponding superalgebra (2.2.16)-(2.2.22) has

the automorphism f = f−1, which corresponds to the transformations Heν → Heν − 4Rν = Hbν ,

Rν → −Rν , G±ν → G±ν , Q1
ν → −S1

ν , Q2
ν → S2

ν , S1
ν → −Q1

ν S2
ν → Q2

ν . Then, the action of ρ1 gives
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us

ρ1(Heν) = σ1(Heν−1 − 4Rν−1)σ1 , ρ1(G±ν ) = σ1(G±ν−1)σ1 , (7.2.3)

ρ1(Rν) = σ1(−Rν−1)σ1 , (7.2.4)

ρ1(Q1
ν) = σ1(−S1

ν−1)σ1 , ρ1(Q2
ν) = σ1(S2

ν−1)σ1 , (7.2.5)

ρ1(S1
ν ) = σ1(−Q1

ν−1)σ1 , ρ1(S2
ν ) = σ1(Q2

ν−1)σ1 , (7.2.6)

which in fact is a combination of the shift ν → ν − 1, the action of f and the unitary rota-

tion. The transformed generators (7.2.3)-(7.2.6) still satisfy the same superconformal algebra, i.e.

ρ1 is an automorphism of the osp(2|2) symmetry, however the new generators describe another

super-extended system: Unlike the initial system Heν , in the transformed one the N = 2 Poincaré

supersymmetry is spontaneously broken in the case of ν > −1/2, see Chap. 2. The only exception

from this rule corresponds to the case ν = −1/2, where the transformed Hamiltonian reduces to

σ1He−1/2σ1, and represents a unitarily transformed super-Hamiltonian with the unbroken N = 2

Poincaré supersymmetry.

On the other hand, one can verify that when ρ1 acts on the Hamiltonian Hbν , it produces

σ1(Heν−1)σ1, and this time the N = 2 Poincaré supersymmetry of the system is changed from the

spontaneously broken phase (in the case of ν > −1/2) to the phase of unbroken supersymmetry, with

the only exception of the system Hb−1/2 with unbroken supersymmetry, which unitary transforms

into σ1Hb−1/2σ1. This action of transformation ρ1 on super-extended systems can be compared

with the case of the non-extended AFF system, where ρ1 acts identically on its Hamiltonian and

generators of the conformal symmetry, though, as we saw, it acts nontrivially on eigenstates of the

system.

On the other hand, the action of ρ2 produces

ρ2(Heν) = −Hbν , ρ2(G±ν ) = −G∓ν , ρ2(Rν) = Rν , (7.2.7)

ρ2(Q1
ν) = −iS1

ν , ρ2(Q2
ν) = −iS2

ν , (7.2.8)

ρ2(S1
ν ) = −iQ1

ν , ρ2(S2
ν ) = −iQ2

ν . (7.2.9)

Transformed Hamiltonian operator is similar here to the Hamiltonian produced by the automor-

phism f but multiplied by −1. This correlates with the anti-Hermitian nature of the transformed

fermion generators of superalgebra. Accordingly, the spectrum of the transformed matrix Hamilto-

nian is negative, not bounded from below, and each of its level is doubly degenerate for ν ≥ −1/2.

In correspondence with the described picture, the application of the combined transformation

ρ2ρ1 is just another automorphism of the superconformal algebra (2.2.16)-(2.2.22), which produces

anti-Hermitian odd generators, and ρ2ρ1(Heν) = σ1(−Heν−1)σ1. The discrete spectrum of the
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transformed Hamiltonian is not restricted from below and is given by the numbers En = −4n,

n = 0, 1, . . ., where each negative energy level is doubly degenerate, while non-degenerate zero

energy level corresponds to the state (ψν,0, 0)t.

7.3 Dual Darboux schemes

With the new set of nonphysical solutions, in this section we extend the idea of dual schemes for

the AFF model with ν ≥ −1/2. As we have shown in Sec. 7.1, the case in which ν takes half-

integer values is special, because the Jordan states take relevance through the properties of the

conformal symmetry generators2, which are simultaneously the ladder operators for corresponding

AFF systems, see equation (7.1.15). For this reason, we start �rst with the case where ν is not

a half-integer. Let us choose a generic set of physical and nonphysical eigenstates of Lν as seed

states,

{α} = (ψν,k1 , . . . , ψν,kN1
, ψ−ν−1,l1 , . . . , ψ−ν−1,lN2

) , ki, lj = ±0,±1, . . . , (7.3.1)

where i = 1, . . . , N1 and j = 1, . . . , N2, and, for simplicity, we suppose that |k1| < . . . < |kN1
| and

|l1| < . . . < |lN2 |. Let us assume that in the scheme (7.3.1) there are no repeated states and both

ki and lj carry the same sign for all i and j. Also let us de�ne the index number

nN = max (|k1|, . . . , |kN1
|, |l1|, . . . , |lN2

|) . (7.3.2)

which can correspond to a state with index ν or −ν − 1. By means of the algorithm described in

Appendix B.2 one can show that

W ({α}) = e−(nN+1)x2

W ({∆−}) , (7.3.3)

{∆−} := (ψ−ν−1,−0, ψν,−0, . . . , ψ̌−ν−1,−ri , ψ̌ν,−si , . . . , ψ−ν−1,−nN , ψν,−nN ) ,

is satis�ed, where the marked states ψ̌−ν−1,−ri and ψ̌ν,−si , with ri = nN − ki and sj = nN − lj ,

are omitted from the set {∆−}. On the contrary, if ki and lj carry the minus sign, we have the

equality

W ({α}) = e(nN+1)x2

W ({∆+}) , (7.3.4)

{∆+} := (ψ−ν−1,0, ψν,0, . . . , ψ̌−ν−1,ri , ψ̌ν,sj , . . . , ψ−ν−1,nN , ψν,nN ) ,

2Operators C±ν can be interpreted as the second order intertwining operators associated with the seed states
(ψ−ν−1,0, ψν,0) for ν > 1/2, and to the con�uent scheme (Ω−1/2,0, ψ−1/2,0), when ν = 1/2.
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where now ri = nN − |ki| and sj = nN − |lj |. These relations are also valid if one of the numbers

N1 or N2 is equal to zero, which means that in the corresponding scheme there are only states of

the same kind with respect to the �rst index, −ν − 1 or ν, respectively.

When considering ν = ` − 1/2 with ` = 0, 1, 2, . . ., some repeated states could appear due

to ρ1(ψ`−1/2,n) = (−1)`ψ`−1/2,n−`. This means that the Wronskian must vanish, however, that

happens because, in the general case, this object takes the form Λ(ν)f(x; ν), where Λ(ν) disappears

in these special cases (see the example (7.3.7) below). To obtain a deformed AFF system with

the potential modi�ed by −2 ln(f(x; ν))
′′ for half-integer ν, as well as its dual scheme, we will

have relations analogous to (7.3.3) and (7.3.4), but changing each state of the form ψ−ν−1,±(`+k)

by Ω`−1/2,±k, which means that we are dealing with the con�uent Darboux transformation, see

Appendix B.3 for a detailed derivation. The general rules of the Darboux duality can be summarized

and better understood with the examples presented diagrammatically in Fig. 7.2.

Figure 7.2: Two �mirror diagrams� corresponding to dual schemes for the conformal mechanics model.
The numbers ±n indicate the states ψν,±n, and symbols ±n̄ correspond to the states ψ−ν−1,±n.

These types of diagrams are read in the same way as for the harmonic oscillator mirror diagram

presented in Chap. 5 and in this case they correspond to the following Wronskian relations:

W (ψ−ν−1,2, ψν,2) = e−3x2

W (ψ−ν−1,−1, ψν,−1, ψ−ν−1,−2, ψν,−2) , (7.3.5)

W (ψν,2, ψν,3) = e−4x2

W (ψν,−0, ψν,−1, ψ−ν−1,−2, ψν,−2, , ψ−ν−1,−3, ψν,−3) , (7.3.6)

whose explicit forms are

W (ψν,2, ψ−ν−1,2) = (2ν + 1)e−x
2(

45− 72ν + 16(−4x6 + x8)

+8x4(15− 4ν(1 + ν)) + ν2(−7 + 2ν(2 + ν))
)
,

(7.3.7)

W (ψν,2, ψν,3) = e−x
2

x3+2ν
(
16x8 − 32x6(5 + 2ν) + 24x4(5 + 2ν)2−

8x2(3 + 2ν)(5 + 2ν)(7 + 2ν) + (3 + 2ν)(5 + 2ν)2(7 + 2ν)
)
.

(7.3.8)

The transformation which relates the AFF systems described by Lν with Lν+m can also be un-

derstood within this picture. Furthermore, using a diagram similar to those in Fig. 7.2, one can

show that the schemes {∆+} = (ψr(ν),0, . . . , ψr(ν),m−1) and {∆−} = (ψr(ν),−0, . . . , ψr(ν),−(m−1))

are dual.
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7.4 Rationally deformed AFF systems

A rational deformation of the AFF model can be generated by taking a set of the seed states

{αKA} = (ψν,l1 , ψν,l1+1, . . . , ψν,lm , ψν,lm+1) , (7.4.1)

composed from m pairs of neighbour physical states. Krein-Adler theorem [Krein (1957); Adler

(1994)] guarantees that the resulting system described by the Hamiltonian operator of the form

LKA(ν,m) = Lν+m + 4m+ Fν(x)
Qν(x) (7.4.2)

is nonsingular on R+. Here Fν(x) and Qν(x) are real-valued polynomials, Qν(x) has no zeroes on

R+, its degree is two more than that of Fν(x), and so, the last rational term in (7.4.2) vanishes at

in�nity. The spectrum of the system (7.4.2) is the equidistant spectrum of the AFF model with

the removed energy levels corresponding to the seed states. Consequently, any gap in the resulting

system has a size 12 + 8k, where k = 0, 1, . . . correspond to k adjacent pairs in the set (7.4.1) which

produce a given gap. An example of this kind of systems is generated by the scheme (ψν,2, ψν,3),

whose dual negative scheme is given by equation (7.3.6).

Another class of rationally extended AFF systems is provided by isospectral deformations gen-

erated by the schemes of the form

{αiso} = (ψν,−s1 , . . . , ψν,−sm) , (7.4.3)

which contains the states of the form ρ2(ψν,n(x)) = ψν,n(ix). As the functions used in this scheme

are proportional to xν+1 and do not have real zeros other than x = 0, one obtains a regular on R+

system of the form

Liso(ν,m) = Lν+m + 2m+ fν(x) , (7.4.4)

where fν(x) is a rational function disappearing at in�nity [Grandati (2012)], and one can �nd that

potential of the system (7.4.4) is a convex on R+ function. In this case the transformation does

not remove or add energy levels, and, consequently, the initial system Hν and the deformed system

(7.4.4) are completely isospectral superpartners. Some concrete examples of the systems (7.4.4)

with integer values of ν were considered in the two previous chapters, see also [Cariñena et al.

(2018)] .

Consider yet another generalized Darboux scheme which allows us to interpolate between dif-

ferent rationally deformed AFF systems. For this we assume that the initial AFF system is char-

acterized by the parameter ν = µ + m, where −1/2 < µ ≤ 1/2 and m can take any non-negative
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integer value. For these ranges of values of the parameter ν, real zeros of the functions ψµ+m,n−m

are located between zeros of ψ−(µ+m)−1,n, so that we can rethink the Krein-Adler theorem and

consider the scheme

{γµ} = (ψ−(µ+m)−1,n1
, ψ(µ+m),n1−m, . . . , ψ−(µ+m)−1,nN , ψ(µ+m),nN−m) , (7.4.5)

which includes 2N states and where we suppose that ni −m ≥ 0 for all i = 1, . . . , N . The DCKA

transformation based on the set (7.4.5) produces the system

Ldefµ+m := Lµ+m − 2(lnW (γν))′′ = Lµ+m + 4N + hµ+m(x)/qµ+m(x) , (7.4.6)

where the constant 4N is provided by the Gaussian factor in the Wronskian, and the last term is

a rational function vanishing at in�nity and having no zeros on the whole real line, including the

origin, if an only if −1/2 < µ ≤ 1/2, see Appendix A.2. Let us analyze now some special values of

µ.

The case µ = 0 : by virtue of relations between Laguerre and Hermite polynomials mentioned

in Chap 2, see equation (2.1.28), in this case we obtain those systems which were generated in

[Cariñena et al. (2018)] and discussed in Chap. 5, we refer to systems (5.1.2).

The case µ = 1/2 : we have here the relation

ρ1(ψm+1/2,ni) = ψ−m−3/2,ni = (−1)m+1ψm+1/2,ni−m−1 , (7.4.7)

due to which the scheme (7.4.5) transforms into

{γ1/2} = (ψ1/2+m,n1−m−1, ψ1/2+m,n1−m, . . . , ψ1/2+m,nN−m−1, ψ1/2+m,nN−m) , (7.4.8)

which corresponds to (7.4.1) with li = ni−m−1. We additionally suppose that ni−m−1 6= ni−1−m,

otherwise the Wronskian vanishes. Note that when µ 6= 1/2, the image of the states ψµ+m,ni−m−1

under Darboux mapping (1.2.4) is a physical state, but in the case µ = 1/2 such states are mapped

into zero since the argument ψ1/2+m,ni−m−1 appears twice in the Wronskian of the numerator.

The case µ = −1/2 : this case was not included in the range of µ from the beginning due to

relation ρ1(ψm−1/2,ni) = ψ−m−1/2,ni = (−1)mψm−1/2,ni−m which would mean the appearance of

the repeated states in the scheme (7.4.5) and vanishing of the corresponding Wronskian. However,

in Appendix A.2 we show that the limit relation limµ→−1/2W ({γµ})/(µ+ 1
2 )N ∝W ({γ}) is valid,

where the scheme {γ} is

{γ} = (ψm−1/2,n1−m,Ωm−1/2,n1−m, . . . , ψm−1/2,nN−m,Ωm−1/2,nN−m) , (7.4.9)
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which corresponds to a non-singular con�uent Darboux transformation, [Correa et al. (2015)].

By considering this last comment, in conclusion we have that when −1/2 ≤ µ < 1/2, the states

ψ−(µ+m)−1,ni (and Ωm−1/2,ni−m in the case of µ = −1/2) are nonphysical states. This means that

only the physical states ψν+m,ni−m indicate the energy levels removed under the corresponding

Darboux transformation, i.e., there are gaps of the minimum size 2∆E = 8, where ∆E = 4 is the

distance between energy levels of the AFF model, which can merge to produce energy gaps of the

size 8 + 4k. On the other hand, when µ = 1/2, we have a typical Krein-Adler scheme with gaps of

the size 12 + 4k.

To give an example, we put m = 0, that means ν = µ, and consider the scheme (ψ−ν−1,2, ψν,2)

given in (7.3.7) with −1/2 < ν ≤ 1/2, and in the case of ν = −1/2 we have the scheme

(ψ−1/2,2,Ω−1/2,2). The potential of the rationally deformed AFF system generated by the cor-

responding Darboux transformation is shown in Fig. 7.3 and Fig. 7.4.

Figure 7.3: On the left, a graph of the corresponding potential is shown which is produced by the associated
Darboux transformation applied to the AFF model with three indicated values of the parameter ν versus
the dimensionless coordinate x. For ν = −1/2, the corresponding limit is taken, and the resulting system
has an attractive potential with a (not shown) potential barrier at x = 0. For ν = 0, we obtain a rationally
extended half-harmonic oscillator. The case ν = 1/2 corresponds to the Krein-Adler scheme (ψ1/2,1, ψ1/2,2)
with a gap equal to 12. On the right, the ground states of the corresponding generated systems are shown
as functions of dimensionless coordinate x.

Figure 7.4: On the left, the potential of deformed systems with ν close to 1/2 is shown. On the right, the
ground states of the corresponding systems are displayed.

As it is seen from the �gures, the �rst minimum of the potential grows in its absolute value, its

position moves to 0, and it disappears at ν = 1/2, while the local maximum near zero also grows,
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its position approaches zero, and it goes to in�nity in the limit. Besides, the �rst maximum of

the ground state vanishes when ν approximates the limit value 1/2. Coherently with the described

behavior of the potential, the image of the Darboux-transformed state ψν,1, which is the �rst excited

state of the new system when −1/2 ≤ ν < 1/2, vanishes when ν → 1/2, the corresponding energy

level disappears from the spectrum at ν = 1/2, and the size of the gap increases from 8 to 12.

The described three possible selection rules to choose the seed states correspond to the negative

scheme (7.4.3), which generates isospectral deformations, the positive Krein-Adler scheme (7.4.1),

and the positive interpolating scheme (7.4.5). Then we can apply the Darboux duality to obtain

the corresponding dual schemes for them. The positive and negative dual schemes will be used in

the next subsection to construct complete sets of the spectrum-generating ladder operators for the

rationally deformed conformal mechanics systems.

7.5 Intertwining and ladder operators

In this paragraph we proceed to construct the intertwining and ladder operators of rational deformed

system obtained by means of the seed states selection rules detailed above. For simplicity we do

not touch here the schemes that contain Jordan states. However, we have relations (1.3.8) and

(7.1.16), and relations (7.3.3) and (7.3.4) which were extended to such cases with the corresponding

substitutions. This means that the properties summarized below are also valid for the schemes

containing Jordan states. Suppose that the positive (negative) scheme possesses n+ (n−) seed

states. Then the generated Hamiltonian L(±) satisfy the relation

L(+)− L(−) = ∆E(nn+
+ 1) = 2(n+ + n−) , ∆E = 4 , (7.5.1)

where nn+
is the bigest quantum number in the positive scheme. Let us denote by A±(+) and A

±
(−)

the intertwining operators of the positive and negative schemes being di�erential operators of the

orders n+ and n−, respectively. They satisfy the intertwining relations

A−(±)Lν = L(±)A
−
(±) , A+

(±)L(±) = LνA
+
(±) . (7.5.2)

As the states ψ̃r(ν),±n behave asymptotically as e±x
2/2, the states produced from them by applica-

tion of di�erential operators A−(±) will carry the same exponential factor. Having this asymptotic

behavior in mind, let us suppose that ψr(ν),−l∗ and ψr(ν),n∗ are some arbitrary states from the

negative and positive scheme, respectively. By using (7.5.2), we obtain the relations

A−(−)ψ̃r(ν),−l∗ = A−(+)ρ1(ψr(ν),nn+−l∗) , A−(+)ψ̃r(ν),n∗ = A−(−)ρ1(ψr(ν),−(nn+−n∗)) , (7.5.3)
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in both sides of which the functions satisfy the same second order di�erential equation and have

the same behaviour at in�nity. Note that in the dual schemes in (7.3.3) and (7.3.4), the indexes

nn+
− l∗ and −(nn+

− n∗) are in correspondence with the indexes ri, and si of the states omitted

from the positive and negative scheme, respectively. This helps us to �nd that

ker
(
A+

(−)A
−
(+)

)
= (ψν,0, ψ−ν−1,0, . . . , ψν,nn+

, ψ−ν−1,nn+
) = ker (C−ν )nn+

+1 , (7.5.4)

from where we obtain the identities

A+
(−)A

−
(+) = (−1)nn+

+1−n+(C−ν )nn+
+1 , A+

(+)A
−
(−) = (−1)nn+

+1−n+(C+
ν )nn+

+1 . (7.5.5)

Finally, to have a complete picture we write the relations

A−(−)ψr(ν),k = A−(+)ψr(ν),nn++1+k′ , A−(+)ψr(ν),−k′ = A−(−)ψr(ν),−(nn++1+k′) . (7.5.6)

Note that in the case ν = 0, �rst equation reduces to (6.1.3).

In the case of the dual schemes where ν = m − 1/2, similar relations are obtained but with

ψ−µ−m−1,±ni and ψ̃−µ−m−1,±ni replaced by Ωm− 1
2 ,±(ni−m) and Ω̆m− 1

2 ,±(ni−m) when is required.

With the help of the described intertwining operators, we can construct three types of ladder

operators for L(±) which are given by:

A± = A−(−)C
±
ν A

+
(−) , B± = A−(+)C

±
ν A

+
(+) , C+ = A−(−)A

+
(+) , C− = A−(+)A

+
(−) . (7.5.7)

Let us denote these operators in the compact form F±a = (A±,B±, C±), a = 1, 2, 3, and use (7.5.1)

and (7.5.2) to obtain the commutation relations

[L(±),F±a ] = ±RaF±a , [F−a ,F+
a ] = Pa(L(±)) , (7.5.8)

R1 = R2 = 4 , P1 = (η + 2ν + 3)(η − 2ν + 1)Pn−(η)Pn−(η + 4)|η=L(−)

η=L(−)−4 ,

P2 = (η + 2ν + 3)(η + 2ν + 1)Pn+
(η)Pn+

(η + 4)|η=L(+)

η=L(+)−4 ,

R3 = 4(nn+
+ 1) , P3 = Pn+

(η)Pn−(η)|η=L(−)

η=L(+)−4 ,

where

Pn−(y) =

n−∏
i=1

(y − λ−i ) , Pn+(y) =

n+∏
i=1

(y − λ+
i ) , (7.5.9)

and λ±i are the corresponding eigenvalues of the seed states in the positive and negative schemes.

Equations (7.5.8) are three di�erent but related copies of the nonlinearly deformed conformal alge-

bra sl(2,R). One can verify the commutators between generators with di�erent values of index a
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do not vanish, and therefore the complete structure is rather complicated.

Similarly to the non-deformed case, be means of a unitary transformation produced by U =

e−itL(±) we obtain the integrals of motion HF±a (t) = e∓RaF±a , and by linear combinations of them

construct the Hermitian generators Da(t) = (F−a (t)−F+
a (t))/(i2Ra) and Ka(t) = (F+

a (t)+F−a (t)+

2L(±))/R
2
a, which generate three copies of a nonlinear deformation of the Newton-Hooke algebra,

[L(±),Da] = −i
(
L(±) −

(Ra)2

2
Ka

)
, [L(±),Ka] = −2iDa , (7.5.10)

[Da,Ka] =
1

iR3
a

(
Pa(L(±))− 2RaL(±) +R3

aKa
)
,

which are hidden symmetries of the system described by L(±).

In the isospectral case, the operators A± are the spectrum generating ladder operators, where

their action on physical eigenstates of L(±) is similar to that of C±ν in the AFF model. On the

other hand, in rationally extended gapped systems obtained by Darboux transfromations based

on the schemes not containing Jordan states, the separated states have the form A−(−)ψ̃−ν−1,−lj =

A−(+)ψν,nn+−lj , where the states ψ−ν−1,−lj belong to the negative scheme and ψν,nn+−lj are the

omitted states in the corresponding dual positive scheme. Since by construction the separated

states belong to the kernel of A+
(−), the operators A

± and C− will always annihilate all them.

In summary, the resulting picture is more or less the same as we had for the cases analyzed

in the previous chapters. We have three pairs of ladder operators; B± detect the upper and lower

energy levels of each isolated valence band, A± operators annihilate all the isolated states, and C±

operators connect isolated states with the equidistant part of the spectrum.

7.6 An Example

In this section we will apply the machinery of the dual schemes and the construction of nonlinear

deformations of the conformal algebra to a nontrivial example of rationally extended systems with

gaps. Remember that if we take ν = µ+m, we replace ψ−(µ+m)−1,±n by Ω−(µ+m)−1,±(n−m) with

n > m when µ→ −1/2 in each of the relations that we have in the following, see Sec. 7.3.

Consider a system generated on the base of the Darboux-dual schemes

(ψν,2, ψν,3) ∼ (ψν,−0, ψν,−1, ψν,−2, ψ−ν−1,−2, ψν,−3, ψ−ν−1,−3) . (7.6.1)

Here, n− = 2, n+ = 6, nn+ = nn− = 3 and n− + n+ = 2(nn+ + 1) = 8 = 2∆E. The positive

scheme, whose Wronskian is given explicitly in (7.3.8), corresponds to the Krein-Adler scheme that

provides us with the system

L(+) = − d2

dx2 + V(+)(x) , (7.6.2)
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whose potential V(+) is plotted in Figure 7.5. The spectrum of the system, Eν,0 = 2ν + 3, Eν,1 =

2ν + 7, Eν,n = 2ν + 4(n + 2) + 3, n = 2, . . ., is characterized by the presence of the gap of the

size 3∆E = 12, which appears between the �rst and second excited states. The negative scheme

generates the shifted Hamiltonian operator L(−) = L(+) − 4∆E. In terms of the intertwining

operators A±(+) and A
±
(−) of the respective positive and negative schemes, the physical eigenstates

of (7.6.2) are given by

Ψj = A−(+)ψν,j = A−(−)ψ̃−ν−1,j−3 , j = 0, 1 , (7.6.3)

Ψj = A−(+)ψν,j+2 = A−(−)ψν,j−2 , j = 2, 3, . . . . (7.6.4)

Figure 7.5: The resulting potential with ν = 1/3 and energy levels of the system. The energy levels of
the physical states annihilated by the ladder operators A−, A+, B−, B+, and C− are indicated from left to
right.

The explicit form of the polynomials (7.5.9) for the system is

Pn+
(η) = (η − 11− 2ν)(η − 15− 2ν) , (7.6.5)

Pn−(η) = (η + 9− 2ν)(η + 13− 2ν)

3∏
i=0

(η + 4n+ 3 + 2ν) , (7.6.6)

and so, A−(±)A
+
(±) = Pn±(Hν) and A−(±)A

+
(±) = Pn±(L(±)).

The spectrum-generating ladder operators are given by Eq. (7.5.7), and the nonlinearly de-

formed conformal algebras generated by each corresponding pair of the ladder operators and the

Hamiltonian L(+) are obtained from (7.5.8) by using polynomials (7.6.5) and (7.6.6). To clarify

physical nature of the ladder operators, one can inspect their corresponding kernels by using rela-

tions (7.1.12) and (7.5.5). As a result, one gets that the physical eigenstates annihilated by these

operators are indicated in �gure 7.5 and all other functions in the respective kernels are nonphysical

solutions.
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7.7 Remarks

Note that the group K4 can also be discussed in the context of Schrödinger equation

(
− ∂2

∂x2
+
ν(ν + 1)

x2

)
ψ = i

∂

∂t
ψ , (7.7.1)

the stationary solutions of which are Ψν(x, t;κ) = ψν(x;κ)e−iκ
2t, where ψν(x;κ) =

√
xJν+ 1

2
(κx) .

The transformation ρ2 gives us the modi�ed Bessel functions, besides ρ1 produces singular solutions

when ν is not a half-integer number. In the case ν = ` − 1/2 with ` = 0, 1, 2 . . . , we have that

ρ1(ψ`−1/2(x, κ)) =
√
xJ−`(κx) = (−1)`ψ`−1/2(x, κ).
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Chapter 8

Three-dimensional conformal

mechanics in a monopole background

The conformal algebra shown in Chap. 2 can be realized in higher-dimensional models. In the

same sense, the conformal bridge is an algebraic construction, independent of the realization. This

means that it also works for these higher-dimensional generalizations.

In this chapter, we will study a direct generalization of the AFF model in three dimensions,

whose Hamiltonian corresponds to

H =
π2

2m
+
mω2r2

2
+

α

2mr2
, (8.0.1)

where ω > 0, π = p − eA, A is a U(1) gauge potential of a Dirac magnetic monopole at the origin

with charge g, ∇×A = B = gr/r3, and the coupling α should be chosen appropriately to prevent

a fall to the center, see below. We solve the Hamiltonian equations, study the conformal Newton-

Hooke symmetry of the system, and investigate a hidden symmetry which appears in a special case

α = ν2, ν = eg. The results of this chapter are based on the article [Inzunza et al. (2020a)] which

was inspired by the line of reasoning used in [Plyushchay and Wipf (2014)] to identify the hidden

symmetry and characterize the particle's trajectories.

8.1 Classical case

The particle's coordinates and kinetic momenta obey the Poisson brackets relations {ri, πj} = δij ,

{ri, rj} = 0 , and {πi, πj} = eεijkBk , which give rise to the equations of motion

ṙ =
1

m
π , π̇ =

1

mr3
(αn − ν r × π)−mω2r , (8.1.1)
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where n = r/r. From (8.1.1) we derive the equations dr
dt = 1

mπr , and ṅ = 1
mr2 J × n , where we

denote πr = n · π, and

J = r × π − νn (8.1.2)

is the conserved Poincaré vector identi�ed as the angular momentum of the system,

{Ji, Jj} = εijkJk , {Ji, rj} = εijkrk , {Ji, πj} = εijkπk . (8.1.3)

In terms of this conserved quantity the Hamiltonian can be presented in the form

H =
π2
r

2m
+

L 2

2mr2
+
mω2r2

2
, L 2 := J 2 − ν2 + α , (8.1.4)

which reveals that the variables r and πr, {r, πr} = 1, behave like y and p in the one-dimensional

AFF model (2.1.16). From (8.1.4) one also reads the following assertions:

� There is no fall to the center if L 2 > 0, i.e. α > 0, that we will assume from now on.

� The possible values of the angular momentum J and energy obey the relation Lω
H ≤ 1 .

� The turning points for the radius are

r2
± =

H

mω2
(1± ρ) , 0 ≤ ρ =

√
1− L 2ω2

H2
< 1 , r+r− =

L

mω
. (8.1.5)

On the other hand, to solve the equations of motion it is worth parameterizing n as

n(t) = n‖ + n⊥(t) = −ν J

J2 + n⊥(t), J · n⊥(t) = 0 , J · n = J · n‖ = −ν. (8.1.6)

n⊥(t) = n⊥(0) cosϕ(t) + Ĵ × n⊥(0) sinϕ(t) . (8.1.7)

From (8.1.7) and the equation of motion for n we get ϕ̇ = J
mr2 . These relations involve a clockwise

rotation of n⊥ from the perspective of vector J . Thus, if J is oriented along ez, and ν < 0,

0 < θ < π/2, where θ = arccos(−ν/J), the path of the particle is on the upper sheet of the cone

and n⊥ rotates clockwise in the horizontal plane. If on the other hand J is oriented along −ez
and ν > 0, π/2 < θ < π, then the path is again on the upper sheet of the cone, but the vector n⊥

rotates counterclockwise in the (x, y) plane looking from ez. We also note that when J = ν, then

θ = π so n is co-linear to J and there is no rotation at all. In the following we exclude that case.

The corresponding solutions for the angular and radial variables are

r2(t) = H
mω2 (1− ρ cos(2ωt)) , ϕ(t) = J

L arctan
(
rmax

rmin
tan(ωt)

)
, (8.1.8)

where the initial conditions r(t = 0) = r− := rmin and ϕ(t = 0) = 0 are assumed (also we rede�ne
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r+ := rmax). By expressing time thought ϕ(t) and introducing it in to r2(t), we obtain the trajectory

equation

1

r2(ϕ)
=
mH

L 2

[
1 + γ cos

(
2L

J
ϕ

)]
, (8.1.9)

which shows us that the angular period is πJ/L . The condition for a periodic trajectory is

2L

J
2πlr = 2πla ⇐⇒ 2L

J
=
la
lr
, lr, la = 1, 2, . . . . (8.1.10)

From the de�nition of L in (8.1.4) we �nd that the trajectories are closed for arbitrary values of

J if and only if α = ν2. On the other hand, when α 6= ν2, the trajectory will be closed only for

special values of the angular momentum given by the condition

α = ν2 +

(
1

4

l2a
l2r
− 1

)
J2 , (8.1.11)

and in this case the condition Lω
H ≤ 1 takes the form la

lr
≤ 2H

ωJ . Figure 8.1 illustrates several

particular orbits lying on the corresponding conical surface in a general case α 6= ν2 and in the

special case α = ν2. Trajectories r(ϕ) are shown there for �xed values of H, J and ν, but for

di�erent values of α.

Figure 8.1: The depicted trajectories correspond to the vector J oriented along ez. The �rst �gure in
the top row represents the generic case with non-closed trajectory. The other �gures are examples of closed
trajectories with parameters satisfying the relation (8.1.11), with quotients la/lr = {1, 1/2, 2/3, 3/2, 2}
are sequentially shown. The last relation la/lr = 2 corresponds to the special case α = ν2.

Below we shall see that when α = ν2, the projection to the plane orthogonal to J of the

trajectory shown on the last plot is an ellipse centered at the origin of the coordinate system

similarly to the case of the three-dimensional isotropic harmonic oscillator. This corresponds to

a fundamental universal property of the magnetic monopole background which we discuss in the
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last section. Since the center of the projected elliptical trajectory is in the center of an ellipse, the

angular period Pa is twice the radial period Pr, Pa/Pr = 2, similarly to the isotropic harmonic

oscillator. This is di�erent from the picture of the �nite orbits in Kepler problem where the force

center is in one of the foci, and as a result Pa = Pr. This similarity with the isotropic oscillator

and contrast to the Kepler problem are also re�ected in the spectra of the systems at the quantum

level.

As we have the AFF model form of the Hamiltonian in (8.1.4), we can intermediately write the

rest of the Newton-Hooke conformal algebra generators. They are given by

D = 1
2

(
rpr cos(2ωτ) +

(
mωr2 −Hω−1

)
sin(2ωτ)

)
, (8.1.12)

K = cos(2ωτ)m r2

2 −
H
ω2 sin2(ωτ)− sin(2ωτ)

2ω rpr . (8.1.13)

Together with H they satisfy the algebra (2.1.30). The Casimir invariant corresponds to F = L 2

4 .

To conclude this part of the analysis, we comment on the limit ω → 0. In this case the generators

H, D and K take the form

H0 =
π2
r

2m
+

L 2

2mr2
, D0 =

1

2
rπr −H0t , K0 =

mr2

2
−Dt−H0t

2 , (8.1.14)

and satisfy the conformal algebra.

The case α = 0 of the system H0 corresponds to a geodesic motion on the dynamical cone

[Plyushchay (2000b, 2001)]. The special case of α = ν2, on the other hand, was studied in

[Plyushchay and Wipf (2014)]. It was shown there that the trajectory of the particle, projected

to the plane orthogonal to J , is a straight line along which the projected particle's motion takes

place with constant velocity. Consistently with these peculiar properties, in the special case α = ν2

the system with H0 possesses a hidden symmetry described by the integral of motion V = π × J

being a sort of Laplace-Runge-Lenz vector, in the plane orthogonal to which and parallel to J the

particle's trajectory lies [Plyushchay and Wipf (2014)]. In Fig. 8.3 some plots of the trajectories

are shown for the system (8.1.14).

Figure 8.2: Each plot represents a trajectory for a speci�c value of α chosen according to (8.1.11) with
the vector J oriented along ez. From left to right the cases la/lr = {3/2, 1/2, 2} are shown, where the last
plot corresponds to the special case α = ν2.
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8.1.1 The case α = ν2 : hidden symmetries

In the case α = ν2 the particle described by the Hamiltonian (8.0.1), which now is

H =
π2

2m
+
mω2

2
r2 +

ν2

2mr2
, (8.1.15)

admits the vector integrals of motion responsible for the closed nature of the trajectories for arbi-

trary choice of initial conditions. The integrals are derived by an algebraic approach as in Fradkin's

construction for the isotropic three-dimensional harmonic oscillator [Fradkin (1965)].

Let us �rst introduce the vector quantities

I1 = π× J cos(ωt) + ωmr × J sin(ωt) , (8.1.16)

I2 = π× J sin(ωt)− ωmr × J cos(ωt) . (8.1.17)

Using the corresponding equations of motion for r and π is not di�cult to show that İi = 0 so

they are dynamical integrals of motion.

The evaluation of these integrals in the initial conditions give us

I1(0) =
J2

rmin
n⊥(0) , I2(0) = mωrminJ × n⊥(0) , (8.1.18)

thus, I1 and I2 are orthogonal to each other. On the other hand, the lengths of these vectors are

also dynamical integrals which for the initial conditions take the form

|I1| = mω
√
J2 − ν2 rmax, |I2| = mω

√
J2 − ν2 rmin , (8.1.19)

where we have taken into account Eqs. (8.1.18) and the second equation in (8.1.5). The sum of

their squares, however, is a true integral of motion whose value is a function of H and J ,

I 2
1 + I 2

2 = 2mH(J2 − ν2) . (8.1.20)

These vectors point in the direction of the semi-axes of the elliptic trajectory in the plane orthogonal

to J . The lengths of semi-major and semi-minor axes correspond to those of the vectors rn⊥(0)

and rĴ×n⊥(0), and are equal to rmax

√
1− ν2/J2, and rmin

√
1− ν2/J2. As it is shown in [Inzunza

et al. (2020a)], in a general case of α 6= ν2, the periodic change of the scalar product of I1 and I2,

which would not be integrals, implies a precession of the orbit, see Fig. 8.1.

Using the de�nition of I1 and I2 in (8.1.16) and (8.1.17), we can express the position r(t) of
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the particle as follows,

r(t) =
1

mωJ2

J × I1 sinωt− J × I2 cosωt− ν

√
I2
1 sin2 ωt+ I2

2 cos2 ωt
√
J2 − ν2

J

 , (8.1.21)

where we again see that I1 = I1(0) and I2 = I2(0) correspond to the orthogonal set that de�ne the

elliptic trajectory in the plane.

Alternatively, one can follow a more algebraic approach to extract information on the trajectories

without explicitly solving the equations of motion. It is well known from the seminal paper [Fradkin

(1965)] that for the three-dimensional isotropic harmonic oscillator all symmetries of the trajectories

are encoded in a tensor integral of motion. During the rest of this subsection we construct an

analogous tensor for the system at hand to �nd the trajectories by a linear algebra techniques. We

begin with the tensor integrals

T ij = T (ij) + T [ij] , T (ij) =
1

2
(Ii1I

j
1 + Ii2I

j
2) , T [ij] =

1

2
(Ii1I

j
2 − I

j
1I
i
2) . (8.1.22)

They, unlike the vectors I1 and I2, but like the quadratic expression (8.1.20) are the true, not

depending explicitly on time integrals of motion, d
dtT

ij = {T ij , H} = 0.

In accordance with (8.1.20), their components satisfy relations

tr(T ) = m(J2 − ν2)H , εijkT
[jk] = mω(J2 − ν2)Ji . (8.1.23)

As the anti-symmetric part of T ij is related to the Poincaré integral, we only need to use the

symmetric part T (ij), which is related but not identical to Fradkin's tensor. Since the vectors

(8.1.16), (8.1.17) are orthogonal to each other and to J , we immediately conclude that J , I1 and

I2 are eigenvectors of T (ij) with eigenvalues equal, respectively, to zero and

λ1 = |I1|2 =
1

2
m2ω2(J2 − ν2)r2

max , (8.1.24)

λ2 = |I2|2 =
1

2
m2ω2(J2 − ν2)r2

min , (8.1.25)

Also one can show that the quadratic form rTTr is time-independent,

2riT
ijrj = (I1 · r)2 + (I2 · r)2 = (J2 − ν2)2 . (8.1.26)

In a coordinate system with orthonormal base ex = Î1, ey = Î2 and ez = Ĵ , the quadratic form

(8.1.26) simpli�es to

λ1x
2 + λ2y

2 = (J2 − ν2)2 . (8.1.27)
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With rmaxrmin = J/(mω) one ends up with the equation for an ellipse in the plane orthogonal to

J :
x2

r2
min

+
y2

r2
max

=
J2 − ν2

J2
. (8.1.28)

The lengths of the semi-major axis and semi-minor axis of the ellipse are rmax

√
1− ν2/J2 and

rmin

√
1− ν2/J2, in accordance with that was found above.

Finally, the symmetric tensor components integral T(ij) satisfy the Poisson bracket relations

{Ji, T(jk)} = εijlT(lk) + εiklT(jl) , (8.1.29)

{T(ij), T(lk)} = m(εilsFjk + εiksFjl + εjlsFik + εjksFim)Js , (8.1.30)

where Fij = 1
4mω

2(J2 − ν2)2δij −HT(ij) .

In fact, the quantum version of the tensor T(ij) was already considered in [Labelle et al. (1991)],

but this is the �rst time that it has been obtained and used at the classical level.

8.2 Quantum theory of the model with α = ν2

The quantum theory of the system with Hamiltonian (8.1.15) is discussed in details in [McIntosh

and Cisneros (1970); Labelle et al. (1991); Inzunza et al. (2020a)] and here we summarize the

results. We shall use the units in which m = 1 and ~ = 1.

In coordinate representation the basic commutation relations are

[r̂i, r̂j ] = 0 , [r̂i, Π̂j ] = iδij , [Π̂i, Π̂j ] = iνεijk
r̂k
r3
. (8.2.1)

In what follows we shall skip the hat symbol ˆ to simplify the notation. The Hamiltonian (8.1.15)

can be written as

H =
1

2

[
− 1

r2

∂

∂r

(
r2 ∂

∂r

)
+

1

r2
J 2 + ω2r2

]
, (8.2.2)

where J is just the quantum version of the Poincaré integral (8.1.2), the components of which

generate the su(2) symmetry. The Dirac quantization condition implies that ν = eg must take an

integer or half integer value [Plyushchay (2000b, 2001)]. Using the angular momentum treatment

we obtain

J 2Yj3j = j(j + 1)Yj3j , J3Yj3j = j3Yj3j , J±Yj3j = c±jj3Y
j3±1
j , (8.2.3)

with J± = J1 ± iJ2, and

j = |ν|, |ν|+ 1, . . . , j3 = −j, . . . , j , c±jj3 =
√

(j ± j3 + 1)(j ∓ j3) , (8.2.4)
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where the indicated values for j correspond to a super-selection rule. The case ν = 0 corresponds

just to the quantum harmonic isotropic oscillator. Excluding the zero value for ν, i.e. implying that

|ν| takes any nonzero integer or half-integer value, the �rst relation in (8.2.3) automatically provides

the necessary inequality J 2 = j(j + 1) > ν2. The functions Yj3j = Yj3j (θ, ϕ; ν) are the (normalized)

monopole harmonics [Wu and Yang (1976); Lochak (1985); Plyushchay (2000b, 2001)], which are

well de�ned functions if and only if the combination j ± ν is in N0 = {0, 1, 2, . . .}.

Then, the eigenstates and the spectrum of H are given by

ψj3n,j(r) = fn,j(
√
ωr)Yj3j (θ, ϕ) ,

fn,j(x) =

(
2n!

Γ(n+ j + 3/2)

)1/2

ω3/4 xjL(j+1/2)
n (x2) e−x

2/2 , (8.2.5)

En,j =
(

2n+ j + 3
2

)
ω ,

where L(j+1/2)
n (y) are the generalized Laguerre polynomials. The degeneracy of each level depends

on ν and corresponds to

g(ν,N) =


1
2 (N + ν + 1)(N − ν + 2) , j − ν even

1
2 (N − ν + 1)(N + ν + 2) , j − ν odd

, N = 2n+ j . (8.2.6)

It is remarkable that the system possesses 2|ν| + 1 degenerate ground states. The ground

states here are not invariant under the action of the total angular momentum J , although the

Hamiltonian operator commutes with J and hence is spherically symmetric. Thus we see some

analog of spontaneous breaking of rotational symmetry in the magnetic monopole background.

This is of course in contrast to the isotropic harmonic oscillator in three dimensions which has

a unique spherically symmetric ground state and symmetry algebra su(3). According to [Labelle

et al. (1991)] the symmetry algebra for the system under investigation is su(2) ⊕ su(2). We do

not further dwell on these interesting aspects of symmetry but rather turn to the construction of

spectrum-generating ladder operators.

Note that the coe�cients at radial, n, and angular momentum, j, quantum numbers in the

energy eigenvalue En,j = (2n + j + 3
2 )ω corresponds to the ratio Pa/Pr = la/lr = 2 between the

classical angular and radial periods in the special case α = ν2 under investigation. This can be

compared with the structure of the principle quantum number N = nr+ l+1 de�ning the spectrum

in the quantum model of the hydrogen atom, where the corresponding classical periods are equal.

The explicit wave functions in (8.2.5) are speci�ed by the discrete quantum numbers n, j and

j3. Our target now is to identify the ladder operators for radial, n, and angular momentum, j,

quantum numbers (we already have the ladders operators for j3), which are based on the conformal
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and hidden symmetries of the system.

In the algebraic approach we do not �x the representation for the position and momentum

operators and thus use Dirac's ket notation for eigenstates.

Ladder operators for n. Let us �rst consider the quantum version of the sl(2,R) symmetry,

[H, C] = −2ω C , [H, C†] = 2ω C† , [ C, C†] = 4ωH , (8.2.7)

where the generators C, C† are the quantum versions of combinations of Newton-Hooke symmetry

generators in the Schrödinger picture at t = 0, i.e.,

C = H − ω2r2 − iω

2
(r · π + π · r) , (8.2.8)

and their action on the eigenstates is

C |n, j, j3〉 = ω dn,j |n− 1, j, j3〉 , C† |n, j, j3〉 = ω dn+1,j |n+ 1, j, j3〉 , (8.2.9)

dn,j =
√

2n(2n+ 2j + 1) . (8.2.10)

Ladder operators for j. We introduce the complex vector operator

a =
1

2
(b × J − J × b) = (b × J − ib) , b =

1√
2

(π − iωmr) , (8.2.11)

together with its Hermitian conjugation. The vector operator a is the quantum version of the

complex classical quantity 1√
2
(I1 + iI2) in Schrödinger picture at t = 0, and its components satisfy

the relations

[H, ai] = −ωai , [Ji, aj ] = iεijkak , [ai, aj ] = −iεijk CJk , (8.2.12)

[a†i , aj ] = −ω[(2J 2 + 1− ν2)δij − JiJj)]− iHεijkJk , (8.2.13)

The action of these operators is computed algebraically in [Inzunza et al. (2020a)] and for us is

su�cient to consider a3 and a†3 and their actions on the ket-states

a3 |n, j, j3〉 = An,j,j3 |n, j − 1, j3〉+Bn,j,j3 |n− 1, j + 1, j3〉 , (8.2.14)

a†3 |n, j, j3〉 = An,j+1,j3 |n, j + 1, j3〉+Bn+1,j−1,j3 |n+ 1, j − 1, j3〉 , (8.2.15)

where the squares of the positive coe�cients are

(
An,j,j3

)2
= ω(2n+ 2j + 1)

(j2 − j2
3)(j2 − ν2)

(2j)2 − 1
,
(
Bn,j,j3

)2
=

2n

2n+ 2j + 3

(
An,j+1,j3

)2
. (8.2.16)
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We see that the operators a3 and a†3 change the quantum numbers n and j, but the result is a

superposition of the two eigenstate vectors. Their action is depicted in Fig. 8.3.

Figure 8.3: The circles represent the �rst two quantum numbers of the eigenstates |n, j, j3〉. Red arrows
indicate the action of a3 and blue arrows correspond to the action of a†3. Note that some circles have two
emergent arrows of the same color, which means that the action of the rising/lowering operator on that
states produce a superposition of two states.

Clearly, if we are working in a representation where H, J 2 and J3 are simultaneously diag-

onalized, it would be rather natural to try to �nd ladder operators that map a given eigenstate

into just one eigenstate with a di�erent quantum number j and not a superposition of eigenstates

(having in mind the picture of the usual harmonic oscillator). To �nd such operators we introduce

the nonlocal operator

J =
√
J 2 + 1

4 −
1
2 , J |n, j, j3〉 = j |n, j, j3〉 , (8.2.17)

and construct the operators

T± = ω(J + 1
2 )a3 ± (H − ω)a3 ∓ a†3 C (8.2.18)

together with their Hermitean conjugate. Actually T± and T †± are the third components of the

vector operators T± and T †± which are given by (8.2.18) wherein a3 and a†3 are replaced by a and

a† on the right hand side. But in what follows it su�ces to consider T± and T †± which are ladder

operators for the energy,

[H,T±] = ωT± , [H,T †±] = −ωT †± . (8.2.19)

They decrease and increase the angular momentum according to

T+ |n, j, j3〉 = ω(2j + 1)An,j,j3 |n, j − 1, j3〉 , (8.2.20)

T− |n, j, j3〉 = ω(2j + 3)Bn,j,j3 |n− 1, j + 1, j3〉 , (8.2.21)

105



and the analogous Hermitian conjugate relations. These nonlocal objects were inspired by a sim-

ilar construction presented in [Quesne and Moshinsky (1990)] for the three-dimensional isotropic

harmonic oscillator.

Now one can generate in a simple way all eigenstates of the commuting observables H,J 2 and J3

by acting with the local ladder operators C, C†, J± and with the nonlocal ladder operators T+,T
†

+

on just one eigenstate. The same can be achieved with local ladder operators when one uses a, a†

instead of T+,T
†

+ , but then the recursive construction gets more involved, since a, a† map into a

superposition of eigenstates.

8.2.1 The conformal bridge in monopole background

Here we show how the generators of the conformal symmetry as well as the hidden symmetry of

the quantum system (8.2.2) can be obtained from generators of the corresponding symmetries of

the quantum system studied in [Plyushchay and Wipf (2014)]. This will be realized by means the

conformal bridge transformation introduced in Chap. 3 .

Similarly to the classical case, in the limit ω → 0 the quantum version of the generators (8.1.14)

has the form

H0 = 1
2

(
π2 + ν2

r2

)
= 1

2

(
− 1
r2

∂
∂r

(
r2 ∂
∂r

)
+ 1

r2J
2
)
, (8.2.22)

D0 = 1
4 (r · π + π · r)−H0t , K0 = 1

2r
2 −Dt−H0t

2 . (8.2.23)

They produce the quantum conformal algebra

[D0, H0] = iH0 , [D0,K0] = −iK0 , [K0, H0] = 2iD0 . (8.2.24)

The Hamiltonian H0 is a non-compact generator of the conformal algebra sl(2,R) with a continuous

spectrum (0,∞). In the same limit and in the quantum version, the vector integrals I1 and I2

transform into vectors

I1 →
1

2
(π× J − J × π) := V ,

I2

ω
→ 1

2

(
πt− r)× J − J × (πt− r)

)
:= G , (8.2.25)

which we identify, respectively, as the Laplace-Runge-Lentz vector and the Galilei boost generator

for the system H0 [Plyushchay and Wipf (2014)] in the Weyl-ordered form. The commutator

relations of the vectors V and G with the generators of the conformal algebra are

[H0, Gi] = −iVi , [K0, Vi] = iGi , [H0, Vi] = [K0, Gi] = 0 , (8.2.26)

[D0, Vi] = i
2Vi , [D0, Gi] = − i

2Gi . (8.2.27)
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In order to go in the opposite direction, i.e., to recover our system H and its symmetry generators

starting from the generators (8.2.22), (8.2.23) and (8.2.25), we implement the conformal bridge

transformation [Inzunza et al. (2020b)],

S = e−ωK0e
1
2ωH0ei ln 2D0 , (8.2.28)

where generators are �xed at t = 0. A similarity transformation generated by S yields

S(J )S−1 = J , S(V )S−1 = a , S(ωG)S−1 = −ia† , (8.2.29)

S(H0)S−1 = 1
2 C S(2iωD0)S−1 = H , S(ω2K0)S−1 = − 1

2 C
† , (8.2.30)

where H = H0 + ω2K0 is the quantum Hamiltonian (8.2.2). Then, as we know from Chap. 3, the

eigenstates of H are mapped from the rank n Jordan states of zero energy of H0, which also satisfy

the equation 2iωD0χ
j3
n,j = ω(2n+ j + 3/2)χj3n,j . Besides, the coherent states are obtained from the

wave-type eigenstates of H0. On one hand, the mentioned Jordan states are

χj3n,j(r, θ, φ) = rj+2nYj3j (θ, φ) , (8.2.31)

and after the transformation we get

Sχj3n,j = (−1)n√
2

(
2
ω

)n+ j
2 + 3

4 [n!Γ(n+ j + 3/2)]
1
2 ψj3n,j . (8.2.32)

On the other hand, the corresponding eigenstates of H0 are

φj3j (r ;κ) = 1√
r
Jj+ 1

2
(κr)Yj3j =

∑∞
n=0

(−1)n(κ/2)2n+j+1/2

n!Γ(n+j+3/2) χj3n,j(r) , (8.2.33)

and the normalized coherent states of H are

ζj3j (r ;κ) = NSφ j3j (r ; κ√
2
) =
√

2Ne−
ωx2

2 +κ2

4ω φ j3j (r ;κ) (8.2.34)

= N
ω1/2

∑∞
n=0

1√
n!Γ(n+j+ 3

2 )

(
κ

2
√
ω

)2n+j+1/2

ψj3n,j(r) ,

where N2 =
√
ω/(Ij+ 1

2
( |κ|

2

2ω )), the term Ij+ 1
2
(z) is the modi�ed Bessel function of the �rst kind,

and we have put the modulus in its argument because κ admits an analytic extension for complex

values, as is usual for coherent states.
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8.3 Remarks

As we have shown, hidden symmetries appear only when α = ν2. In this case, one always has closed

trajectories, the angular period is twice the radial period, and even more, the projected dynamics in

the plane orthogonal to the Poincaré vector turns out to be similar to that of the three-dimensional

isotropic harmonic oscillator trajectory. In fact, such an interesting �coincidence� is actually an

universal property of the monopole background: Consider the system described by the Hamiltonian

H =
π2

2m
+

ν2

2mr2
+ U(r) , (8.3.1)

where U(r) is an arbitrary central potential. The dynamical variables r ×J and π×J satisfy the

same equations of motion as the vector variables r × L and p × L when ν = eg = 0, where L is

the usual angular momentum:

ν 6= 0 ν = 0
d
dt (r × J ) = 1

mπ× J d
dt (r × L) = 1

mp × L
d
dt (π× J ) = U ′(r)n × J d

dt (p × L) = U ′(r)n × L

Table 8.1: Comparison of dynamics in the presence and absence of the monopole charge.

Therefore, the movement in the plane orthogonal to J is equivalent to the dynamics obtained in

the absence of the magnetic monopole source, and if we know the solutions r = r(t) and p = p(t)

in the case ν = 0, the dynamic for π× J and r × J is at hand,

r(t) =
1

J2

(
J × (r(t)× J ) +

√
|r(t)× J |
J2 − ν2

J

)
. (8.3.2)

On the other hand, if we take the system H̃ν = 1
2mπ2 + Ũ(r) with arbitrary central potential Ũ(r),

the corresponding dynamical problem is reduced to that of the system (8.3.1) with central potential

U(r) = Ũ(r) − ν2/2mr2. The indicated similarities and relations allow, in particular, to identify

immediately the analog of the Laplace-Runge-Lenz vector (8.2.25) for a particle in the monopole

background in the cases Ũ = 0, U = 0 and for the Kepler problem with U = q/r. This was done

previously in [Plyushchay (2001); Plyushchay and Wipf (2014)] and [Labelle et al. (1991)] using

di�erent approaches.

In the next chapter we will study how to extend this picture to supersymmetric quantum

mechanics.
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Chapter 9

A charge-monopole superconformal

model

In this chapter we extend our system by means of an additional contribution in the Hamiltonian

(8.2.2) that involves spin degrees of freedom. The supplemented term describes a strong long-range

spin-orbit coupling and one of its direct consequences is the appearance of two independent subsets

of energy levels. In one of these subsets or towers, in�nitely degenerate energy levels appear, while

in the other, the levels have �nite degeneration. The system is studied in detail in Sec. 9.1.

In the Sec. 9.2, we show that thanks to this term, the system introduced earlier supports

a factorization in terms of intertwining operators that naturally leads us to a supersymmetric

extension, which is nothing more than a three-dimensional realization of the superalgebra osp(2|2).

Finally, in Sec. 9.3, it is shown that by means of certain dimensional reductions, it is possible

to obtain supersymmetric AFF models in their exact and spontaneously broken supersymmetric

phase. Something special about the models obtained in this way is that the coupling constant in

the potential is j(j + 1), where j can takes integer or half-integer values, starting from ν = (eg)2.

9.1 Introducing spin degrees of freedom: Spin-orbit coupling

Let us consider the following two Hamiltonians with strong spin-orbit coupling

H±ω =
1

2

(
π2 + ω2r2 +

ν2

r2

)
± ωσ · J = H ± ωσ · J . (9.1.1)

The Hamiltonians H±ω are similar to those which appear as subsystems of the nonrelativistic limit

of the supersymmetric Dirac oscillator discussed in [Moshinsky and Szczepaniak (1989); Bentez

et al. (1990)]. Thus the eigenvalue problems can be solved similarly as in those references, but the

usual spherical harmonics are replaced by the monopole harmonics. Actually, if we choose a spin-
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orbit coupling ω′ σ ·J with 0 ≤ ω < ω′, then the spectra of both Hamiltonians would be unbounded

from below. On the other hand, for 0 ≤ ω′ < ω all energies will have �nite degeneracy. Only in

the very particular case ω′ = ω, which we consider here, the spectra are bounded from below and

half of the energies have a �nite degeneracy whereas the other half have in�nite degeneracy. This

reminds us the BPS-limits in �eld theory, where di�erent interactions balance and supersymmetry

is observed.

The operators H and σ ·J commute and as a consequence H±ω commute with the �total angular

momentum�

K = J + s = J + 1
2 σ , [Ki,Kj ] = iεijkKk . (9.1.2)

The possible eigenvalues of K 2 are k(k + 1). It is well-known how to construct the simultaneous

eigenstates of K 2 and K3:

|n, k, k3,±〉 =
∑
ms

Ckk3
jj3

1
2ms
|n, j, j3〉 ⊗

∣∣ 1
2 ,ms

〉
k=j± 1

2

, (9.1.3)

where the Clebsch-Gordan coe�cients

Ckk3
jj3

1
2ms

=
〈
j, j3,

1
2 ,ms

∣∣ k, k3〉 (9.1.4)

on the right hand side are nonzero only if j3 +ms = k3 and if the triangle-rule holds, which means

that the total angular momentum k is either j + 1
2 or j − 1

2 . In the �rst case the eigenstates of the

total angular momentum are denoted by |. . . , k, k3,+〉 and in the second case by |. . . , k, k3,−〉. The

sums (9.1.3) contain just two terms, since the eigenvalue ms of the third spin-component s3 = 1
2σ3

is either 1
2 or − 1

2 . In the coordinate representation the wavefunctions corresponding to these kets

are given by

〈r |n, k, k3,±〉 = fn,j(
√
ωr) 〈n |k, k3,±〉 , (9.1.5)

〈n |k, k3,±〉 = 1√
2k+1∓1

 ±√k ± k3 + (1∓ 1)/2Yk3−1/2
k∓1/2 (θ, ϕ; ν)√

k ∓ k3 + (1∓ 1)/2Yk3+1/2
k∓1/2 (θ, ϕ; ν)

 := Ωk3±k . (9.1.6)

If ν = eg is integer-valued then j is a non-negative integer and k a positive half-integer. If eg is

half-integer, then j is a positive half-integer and k is in N0.

The vector in (9.1.3) is a simultaneous eigenstate of J 2 with eigenvalue j(j + 1), of K 2 with

eigenvalue k(k + 1), of H with eigenvalue (2n + j + 3
2 )ω, where j = k ∓ 1/2, and �nally of the

operator σ · J :

σ · J |n, k, k3,±〉 =
(
± (k + 1

2 )− 1
)
|n, k, k3,±〉 . (9.1.7)
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As a consequence the action of the Hamiltonians in (9.1.1) on these states is

H+ω |n, k, k3,±〉 = ω
(
2n+ k + 1

2 ± k
)
|n, k, k3,±〉 , (9.1.8)

H−ω |n, k, k3,±〉 = ω
(
2n+ k + 5

2 ∓ (k + 1)
)
|n, k, k3,±〉 . (9.1.9)

We see that the discrete eigenvalues of both Hamiltonians H±ω fall into two families: in one family

all energies are in�nitely degenerate and in the other family they all have �nite degeneracy (due to

their dependence on the quantum number k). More explicitly, for k = j∓ 1
2 the eigenvalues of H∓ω

have in�nite degeneracy and for k = j ± 1
2 they have �nite degeneracy g(N, ν) = N2 − ν2, where

N = n+ j+ 1. A similar peculiar behavior is observed in the Dirac oscillator spectrum [Moshinsky

and Szczepaniak (1989)].

Operators K± = K1 ± iK2 are the ladder operators for the magnetic quantum number k3.

The ladder operators for the radial quantum number are given in (8.2.8), and their action on the

simultaneous eigenstates reads

C |n, k, k3,±〉 = ωdn,j |n− 1, k, k3,±〉 , (9.1.10)

C† |n, k, k3,±〉 = ωdn+1,j |n+ 1, k, k3,±〉 , (9.1.11)

with coe�cients de�ned in (8.2.10). Thus, as for the spin-zero particle system in monopole back-

ground, we can easily construct local ladder operators for n and k3. But again, �nding ladder

operators for k is more di�cult. One way to proceed is to follow the ideas employed for the Dirac

oscillator in [Moshinsky and Szczepaniak (1989); Bentez et al. (1990); Quesne and Moshinsky

(1990)]. First we decompose the total Hilbert space in two subspaces, H = H (+) ⊕H (−), where

each H (±) is spanned by the states |n, k, k3,±〉. Actually we can construct nonlocal operators

which project orthonormally onto these subspaces,

P+ = 1
2 +

√
K 2 + 1

4 −
√
J 2 + 1

4 , (9.1.12)

P− = 1
2 −

√
K 2 + 1

4 +
√
J 2 + 1

4 , (9.1.13)

and reproduce or annihilate the eigenstates,

P(±)

∣∣
H (±) = 1

∣∣
H (±) , P(±)

∣∣
H (∓) = 0 . (9.1.14)

In next step we introduce the operators

A± = P±T±P± , (9.1.15)
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where the nonlocal T± have been de�ned in (8.2.18). The presence of the projectors will ensure

that A± only acts on eigenstates in H (±), and its action on these eigenstates can be computed

straightforwardly using the relations (8.2.20) and (8.2.21):

A+ |n, k, k3,+〉 = (k − 1)
√
n+ kΛk,k3,j |n, k − 1, k3,+〉 , (9.1.16)

A− |n, k − 1, k3,−〉 = (k + 1)
√
nΛk,k3,j |n− 1, k, k3,−〉 , (9.1.17)

with

Λk,k3,j =
ω3/2

k

√
2(k2 − k2

3)(j2 − ν2) .

These relations mean that the operators A± and their adjoint act as ladder operators for the

quantum number k. Together with operators K±, C, C† they generate all eigenstates in the full

Hilbert space from just two eigenstates, one from each subspace H (±).

9.2 The osp(2|2) superconformal extension

In this subsection we construct and analyze supersymmetric partners of the Hamiltonians H±ω

by introducing factorizing operators. From these we obtain two N = 2 super-Poincaré quantum

systems which are related to each other by a common integral of motion which generates an R-

symmetry. Supplementing the supercharges of one of these systems by supercharges of another, we

extend the N = 2 super-Poincaré symmetry up to the osp(2|2) superconformal symmetry realized

by a three-dimensional system of spin-1/2 particle in a monopole background.

Consider the �rst-order scalar operators

Θ = iσ · b − 1√
2

ν

r
, Ξ = iσ · b† − 1√

2

ν

r
, (9.2.1)

and their adjoint Θ† and Ξ†. The products of these operators with their adjoint are

H[1] := ΘΘ† = H+ω + 3
2ω , H̆[1] := ΞΞ† = H−ω − 3

2ω , (9.2.2)

where H±ω are given in (9.1.1). The associated superpartners take the form

H[0] := Θ†Θ = H̆[1] − ν
(

1
r2 + 2ω

)
σr , (9.2.3)

H̆[0] := Ξ†Ξ = H[1] − ν
(

1
r2 − 2ω

)
σr , (9.2.4)
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wherein the projection of σ to the normal unit vector appears,

σr = n · σ =

 cos θ e−iϕ sin θ

eiϕ sin θ − cos θ

 . (9.2.5)

The �rst order operators satisfy the intertwining relations

ΘH[0] = H[1]Θ , Θ†H[1] = H[0]Θ
† , (9.2.6)

ΞH̆[0] = H̆[0]Ξ , Ξ†H̆[1] = H̆[0]Ξ
† . (9.2.7)

To compute the action of the intertwining operators Θ† and Ξ† in eigenstates of H±ω is useful to

express them in the form

Θ† =
σr√

2

(
−1

r

∂

∂r
r + ωr +

1 + σ · J
r

)
, (9.2.8)

Ξ† =
σr√

2

(
−1

r

∂

∂r
r − ωr +

1

r
(1 + σ · J )

)
. (9.2.9)

Then the strategy is to apply directly this operators on the eigenstates of Hω in their coordinate

representation (9.1.5), obtaining in this way the eigenstates of systems H[0] and H̆[0]. The action of

operators Θ and Ξ in these new eigenvectors follows from the intertwining relations (9.2.6)-(9.2.7).

The �nal result is

Θ† |n, k, k3,±〉 = ±
√

2ω(n+ 1 + β±k) ‖n+ β∓, k, k3,±〉 , β± = 1
2 (1± 1) , (9.2.10)

Θ‖n, k, k3,±〉 = ±
√

2ω(n+ β±(k + 1)) |n− β∓, k, k3,±〉 , (9.2.11)

Ξ† |n, k, k3,±〉 = ±
√

2ω(n+ β∓(k + 1) ‖n− β±, k, k3,±〉 , (9.2.12)

Ξ ‖n, k, k3,±〉 = ±
√

2ω(n+ 1 + β∓k) |n+ β±, k, k3,±〉 . (9.2.13)

Where in coordinate representation the normalized spinors ‖n, k, k3,±〉 have the explicit form

〈r‖n, k, k3,±〉 = fn,j±1σrΩ
k3±
k , (9.2.14)

and Ωk3±k are given in (9.1.6).

From these equations it is easy to show that

H[0]‖n, k, k3,±〉 = 2ω(n+ β±(k + 1))‖n, k, k3,±〉 , (9.2.15)

H̆[0] ‖n, k, k3,±〉 = 2ω(n+ 1 + kβ∓) ‖n, k, k3,±〉 , (9.2.16)

and note that in one hand, ‖0, k, k3,−〉 are zero-modes of H[0] since they are annihilated by Θ, and
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on the other hand Ξ† as well as H̆[1] annihilate the set of states |0, k, k3,+〉.

Having at hand the eigenstates ‖n, k, k3,±〉, one may �nd spectrum-generating ladder operators.

In this context Eqs. (9.2.10), (9.2.11), (9.2.12) and (9.2.13) can be used to construct such operators

for the quantum number n. They read

C̃ = Ξ†Θ , C̃† = Θ†Ξ , (9.2.17)

and act on the eigenvectors ‖ . . . 〉 as follows:

C̃† ‖n, k, k3,±〉 = 2ωdn+1,j±1 ‖n+ 1, k, k3,±〉 ,

C̃ ‖n, k, k3,±〉 = 2ωdn,j±1 ‖n− 1, k, k3,±〉 . (9.2.18)

Actually, the �rst order operators Θ and Ξ† factorize the earlier considered second order ladder

operator (8.2.8) according to C = ΘΞ†.

Having constructed lowering and raising operators for n, we are still missing ladder operators

for k and k3. For the latter we may of course use K±, since Θ, Ξ and their adjoint are scalar

operators with respect to K . But once more, for the angular momentum quantum number k we

can introduce nonlocal �dressed� operators

Ã− = Θ
√

1
H[1]
A−
√

1
H[1]

Θ† , Ã+ = Ξ
√

1
H̆[1]
A+

√
1
H̆[1]

Ξ† , (9.2.19)

and their adjoint operators, where A± have been given in (9.1.15). The operators Ã± are the

analogs to A± for the vectors ‖n, k, k3,±〉, as we can see from the equations

Ã+‖n, k, k3,+〉 = (k − 1)
√
n+ kΛk,k3,j ‖n, k − 1, k3,+〉 , (9.2.20)

Ã−‖n, k − 1, k3,−〉 = (k + 1)
√
nΛk,k3,j ‖n− 1, k, k3,−〉 . (9.2.21)

In a �nal step we combine the four 2× 2 matrix Hamiltonians introduced above into two 4× 4

matrix super-Hamiltonians as follows:

H =

 H[1] 0

0 H[0]

 , H̆ =

 H̆[1] 0

0 H̆[0]

 . (9.2.22)

In the limit ν → 0 they turn into di�erent versions of the Dirac oscillator in the nonrelativistic limit,

see [Moshinsky and Szczepaniak (1989)]. Both operators commute with the Z2-grading operator

114



Γ = σ3 ⊗ I2×2, [Γ,H] = [Γ, H̆] = 0, and their di�erence is the (bosonic) integral of motion

R =
1

2ω
(H− H̆) = (J · σ + 3

2 )Γ− 2νσrΠ− =

 σ · J + 3
2 0

0 −(σ · J + 2νσr + 3
2 )

 , (9.2.23)

where Π− is a projector,

Π± = 1
2 (1± Γ) . (9.2.24)

In the fermionic sectors of the systems H and H̆ we have the nilpotent operators

Q =

 0 Θ

0 0

 , W =

 0 0

Ξ† 0

 , (9.2.25)

{Γ,Q} = {Γ,W} = 0, and their adjoint operators.

The even integral R in (9.2.23) generates an R-symmetry for both systems. Having in mind

that H and H̆ can be diagonalized simultaneously, from now on we treat H as the Hamiltonian of

the super-extended system and H̆ = H− 2ωR as its integral. Then, by anti-commuting Q and W

we obtain the bosonic generator

G = {W,Q} =

 C 0

0 C̃

 , [Γ,G] = 0 , (9.2.26)

together with its adjoint. They are composed from the ladder operators of sub-systems H[1] and

H[0] of our system H.

Taking together, these scalar generators with respect to

Ki =

 Ki 0

0 Ki

 , i = 1, 2, 3 , (9.2.27)

obey the osp(2, 2) superalgebra mentioned in Chap. 2, Eqs. (2.2.24)-(2.2.27), and therefore this

construction maybe considered as generalization of the super-extended AFF model to three dimen-

sions.

The common eigenstates of H, R, Γ, K3 and K2 are given by

|n, k, k3,±, 1〉 =

 |n, k, k3,±〉

0

 , |n, k, k3,±,−1〉 =

 0

‖n, k, k3,±〉

 , (9.2.28)
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which satisfy the eigenvalue equations

H |n, k, k3,±, γ〉 = 2ω
(
n+ 1

2 (1 + γ) + β±(k + 1
2 (1− γ))

)
|n, k, k3,±, γ〉 , (9.2.29)

Γ |n, k, k3,±, γ〉 = γ |n, k, k3,±, γ〉 , γ = ±1 , (9.2.30)

R|n, k, k3,±, γ〉 = [±(k + 1
2 ) + γ

2 ] |n, k, k3,±, γ〉 , (9.2.31)

K2 |n, k, k3,±, γ〉 = k(k + 1) |n, k, k3,±, γ〉 , (9.2.32)

K3 |n, k, k3,±, γ〉 = k3 |n, k, k3,±, γ〉 . (9.2.33)

The operatorsQ andQ† (W andW†) de�ned in (9.2.25), interchange the state vectors |n, k, k3,±, γ〉

and |n, k, k3,±,−γ〉 according to the rules in (9.2.10), (9.2.11) and (9.2.12), (9.2.13). The ground

states of H (H̆) which are given by |n, k, k3,−,−1〉 (|n, k, k3,+,+1〉 ) are invariant under trans-

formations generated by these fermionic operators, therefore the quantum system H exhibits the

unbroken N = 2 Poincaré supersymmetry.

Finally, the spectrum-generating ladder operators for the supersymmetric system correspond to

operators G and G† (associated with n), K± that change k3, and the matrix nonlocal operators

 A± 0

0 Ã±

 ,

 A†± 0

0 Ã†±

 . (9.2.34)

related to the angular quantum number k.

9.3 Dimensional reductions

The system studied in the last section and the one presented in Chap 2, Sec. 2.2 share the same

symmetry, and in this paragraph we will show that they are related by a dimensional reduction.

For the sake of simplicity, we put ω = 1 here, and denote
√
ωr = r as x.

The �rst step is to note that the Hamiltonian H can be presented in the following form

H =
1

2

[
− 1

x2

∂

∂x

(
x2 ∂

∂x

)
+ x2

]
I4×4 +

1

2x2
(K2 − ΓR+ 3

4 ) +R . (9.3.1)

Then, to do the reduction we introduce the set of equations

(K2 − k(k + 1)) |χ,±〉 = 0 , (K3 − k3) |χ,±〉 = 0 , (9.3.2)

P± |χ,±〉 = 0 , P± = 1
2k+1 (Π± + k ∓R) , (9.3.3)

where k = j ± 1
2 , and k3 = j3 ± 1

2 . k = j ± 1
2 , and k3 = j3 ± 1

2 . Here, the most general form of
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|χ,±〉 is

|χ,±〉 =

∞∑
n=0

a±n |n, k, k3,±, 1〉+ b±n |n, k, k3,±,−1〉 =

∞∑
n=0

 a±n |n, k, k3,±〉

b±n ‖n, k, k3,±〉

 , (9.3.4)

and e�ectively, operators P± are projectors onto the orthogonal subspaces |χ,−〉 and |χ,+〉. These

states satisfy

H |χ,−〉 =
1

x
H−j x⊗ I2×2 |χ,−〉 , H |χ,+〉 = σ1(

1

x
H+
j+1x)σ1 ⊗ I2×2 |χ,+〉 , (9.3.5)

where H−j = Hej and H+
j = Hbj are the one-dimensional supersymmetric extension of the AFF

model in exact and spontaneously broken phase, see Chap 2, Sec. 2.2. Moreover, if we call as Ba
and Fb (where index B1 is the Hamiltonian and so on) the bosonic and fermionic generators of the

three-dimensional system, respectively, and in the same vein B±j,a and F±j,b are their analogs for

one-dimensional system in their respective supersymmetric phases, we get

Ba |χ,−〉 = 1
xB−j,ax⊗ I2×2 |χ,−〉 , Fb |χ,−〉 = 1

xF−j,bx⊗ σr |χ,−〉 , (9.3.6)

Ba |χ,+〉 = σ1( 1
xB+

j+1,ax)σ1 ⊗ I2×2 |χ,+〉 , Fb |χ,+〉 = σ1( 1
xF+

j,bx)σ1 ⊗ σr |χ,+〉 . (9.3.7)

In these equations the generators take the form of a direct product of two matrix operators: In

case of bosonic (fermionic) operators one has x−1B ⊗ xI2×2 ( x−1F ⊗ xσr), where B (F ) is a

particular bosonic (fermionic) operator of the one-dimensional AFF model in its corresponding

supersymmetric phase. Note that in the odd sector we still have angular dependence due to σr.

To complete the reduction we introduce the operators

O± =

 |v〉 〈k, k3,±| 0

0 |v〉 〈k, k3,±|σr

 , |v〉 =

 1

1

 , (9.3.8)

and their adjoint, as well as the unitary operator

U =


1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1

 , UU† = 1 , detU = −1 . (9.3.9)

Operators O± e�ectively integrate the angular variables, so the bosonic generators do not
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change, but the fermionic generators are transformed into

O−FbO†− |Ψ,−〉 = 1
xF−j,bx⊗ σ1 |Ψ,−〉 , (9.3.10)

O+FbO†+ |Ψ,+〉 = σ1( 1
xF+

j+1,bx)σ1 ⊗ σ1 |Ψ,+〉 , (9.3.11)

where O± |χ,±〉 = |Ψ,±〉. On the other hand, by means of the unitary transformation produced

by U , we are able to present the bosonic and fermionic generators, already transformed by O±, in

the form I2×2 ⊗ x−1Bx and σ1 ⊗ x−1Fx, respectively. From these expressions one simply extracts

the one-dimensional generators by means of the projectors Π±, and it is also easy to show that the

objects Π±U |Ψ,±〉 take the form of the eigenstates of the AFF supersymmetric model divided by

x.

In summary, we have two schemes of dimensional reductions made up by a projection on a

subspace with �xed k, the integration of the remaining angular variables, and a unitary transfor-

mation. Let us denote these two schemes as δ± = {P±,O±, U}. Then, by applying the scheme δ−

(δ+) in our three-dimensional N = 2 osp(2|2) superconformal system we obtain a super-extension

of the AFF model in the exact (spontaneously broken) supersymmetric phase, and there is a one-

to-one correspondence between bosonic and fermionic generators of the three-dimensional model

with those associated with the one-dimensional model.

9.4 Remarks

We end this chapter with a comment related to supersymmetry and Dirac Hamiltonian. Taking

the nilpotent operators Q± given in (9.2.25), a Hermitian supercharge can be constructed, and this

has the form

Q0 = −
√

2(Q+ +Q−) = γi(pi − eAi) + eγ0A0 , (9.4.1)

where A0 = g
r , Ai = Ai − iωe γ

5 ri , and γ5 = Γ is our grading operator in Sec. 9.2. Then the

operator (9.4.1) can be viewed as a parity breaking Euclidean Dirac operator with components of

the gauge potential satisfying the relations −∂iA0 = εijk∂jAk = gri/r
3. Hence we are dealing with

a new type of parity breaking dyon background. Actually, the γ5 terms do not allow for an N = 4

supersymmetric extension and we only have N = 2 supersymmetry, with the second supercharge

given by i
√

2(Q+−Q−) = iγ5Q0. It is interesting to relate a parity-breaking Dirac operators with

supersymmetric quantum mechanics. In this context it is not clear whether a (pseudo)classical

supersymmetric system exists whose quantization would produce our three-dimensional supercon-

formal system, or we have here a kind of a classical anomaly [Gamboa and Plyushchay (1998)].

Also, the fact that the ground state is in�nitely degenerate is maybe due to this parity breaking

term.
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Conclusions and Outlook

In conclusion, we recall the problems a) to d) that were originally listed in the introduction, but

now in the light of the obtained results. This will also allow to point out interesting problems for

further research.

a) Connection between di�erent mechanical systems through symmetries

We addressed the problem of establishing a mapping between the two forms of dynamics (in the

sense of Dirac [Dirac (1949)]) associated with conformal algebra.

The indicated mapping is the conformal bridge transformation introduced in [Inzunza et al.

(2020a)] (Chap. 3), that relates an asymptotically free system with an harmonically con�ned one.

The transformation maps rank n Jordan states of the zero energy (and eigenstates) of the �rst

system to eigenstates (coherent states) of the second. The conformal bridge also maps symme-

try generators from one system to the another. From its general nature, this mapping provides

a new approach to study higher dimensional (in the sense of degrees of freedom) conformal in-

variant systems, such as the Calogero model [Calogero (1969, 1972)]. Actually, we have already

shown its applicability for the Landau problem analyzed in Chap. 3, as well as for the monopole

background model in Chap. 8. A fairly natural question is whether there is any analog trans-

formation at the level of supersymmetric quantum mechanics, in such a way we could include in

this mapping fermionic integrals of motion. There could also be some relationship between this

transformation and the Riemann hypothesis, since Hamiltonians of the form xp have been used in

this direction [Connes (1999); Berry and Keating (1999); Regniers and Van der Jeugt (2010); Sierra

and Rodriguez-Laguna (2011); Bender et al. (2017)].

b) Hidden and bosonized supersymmetry

We wanted to establish the origin of the hidden bosonized superconformal symmetry of the har-

monic oscillator in one dimension [de Crombrugghe and Rittenberg (1983); Balantekin et al. (1988);

Cariñena and Plyushchay (2016a); Bonezzi et al. (2017)].

It was shown that such a bosonized supersymmetry originates from a nontrivial supersymmetric

system, via the nonlocal Foldy-Wouthuysen transformation [Inzunza and Plyushchay (2018)] (Chap.

4). The only fermionic true integrals of that system are the trivial Pauli matrices, and other

operators are dynamical integrals, in the sense of the total Heisenberg equation. In contrast to
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the usual super-harmonic oscillator, the system has spontaneously broken supersymmetry. We

explain the nature of this system through con�uent Darboux transformation and in the scheme of

free anomaly quantization for second order supersymmetry [Plyushchay (2000a); Klishevich and

Plyushchay (2001); Plyushchay (2017)]. The question about what happens in higher dimensional

cases remains open, however we think that the conforming bridge transformation could provide us

an answer.

c) Hidden symmetries in rationally extended conformal mechanics

The objective was to �nd the spectrum generating ladder operators for rational deformations of

the AFF model and its supersymmetric extensions.

We have used the DCKA transformation to produce a rational extension of the AFF model.

The nature of the resulting Hamiltonians depends on the choice of the seed states: We can produce

isospectral and non-isospectral rational deformations that have an arbitrary number of gaps of

di�erent sizes in their spectra. Starting from the harmonic oscillator [Cariñena et al. (2018)]

(Chap. 5), we implemented an algorithmic procedure that takes a set of seed states for DCKA

transformation (them could be physical or nonphysical, but not a mixture), and produces a new set

of seed states of a di�erent nature. Both Darboux schemes essentially generate the same system, up

to an additive constant. This is what we called a Darboux duality for the harmonic oscillator, and

we have used it to construct the spectrum-generating ladder operators for rational deformations of

the AFF model with potential x2 +m(m+ 1)/x2 where m = 0, 1, . . . .. These ladder operators fall

into three categories; Operators of the type A that irreducibly act on the equidistant part of the

spectrum but annihilate all separate states. Operators of type B that act similarly to A on the

equidistant part of the spectrum but annihilate only the upper (rising operator) and lower (lowering

operator) states in each separate band. Finally, operators of type C, that connect the separated

part of the spectrum with its equidistant part. These results are analogous to what was obtained

for rational extensions of the harmonic oscillator in [Cariñena and Plyushchay (2017)].

This phenomenon in which di�erent possible options of Darboux schemes produce the same sys-

tem, also appears in the context of deformations of the free particle, speci�cally, in the construction

of the so-called re�ectionless potentials, see [Matveev and Salle (1991)] for a background on the

subject. The main di�erence between these systems and the rational deformations of the harmonic

oscillator (as well as deformations of the AFF model), is that the Darboux schemes produce there

the same potential without any additive constant. This implies that the Darboux dressing proce-

dure provides there the true integrals of motion, which are the so-called Lax-Novikov integrals, see

[Correa et al. (2008); Arancibia et al. (2013); Arancibia and Plyushchay (2014); Arancibia et al.

(2014); Plyushchay (2020)] for more information.

The next step was to study the complete nonlinear supersymmetry that characterizes the ra-

tional super-extensions of the AFF model and the harmonic oscillator [Inzunza and Plyushchay
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(2019a)] (Chap. 6). By means of a set of algebraic relations, we have obtained a large chain of

new higher-order dynamical integrals that act irreducibly in the system, in a similar way as powers

of the �rst-order ladder operators do in the case of the simplest harmonic oscillator. We stopped

the generation of integrals when we realized that certain objects can be written in terms of more

basic elements than they are, otherwise one would have an in�nite-dimensional algebra of the W

type, see [de Boer et al. (1996)] and references therein. With fermionic generators we have a similar

picture. Despite having so many new operators, which we cannot avoid because they arise from the

commutation relations between operators of the type A, B and C, the role they play is not clear

since the spectrum-generating set was already built. Perhaps there is a more basic structure behind

this construction, hidden in the virtual systems produced by the Darboux chain, but this is still an

open question. In this context, another interesting problem to investigate is whether these higher

order generators can be obtained by means of a quantization prescription of a pseudo-classical sys-

tem, however one must bear in mind that higher order supersymmetry presents a quantum anomaly

[Klishevich and Plyushchay (2001); Plyushchay (2017)].

In [Inzunza and Plyushchay (2019b)] (Chap. 7) we extend the Darboux duality to the case of

the AFF model with potential x2 + ν(ν+ 1)/x2, where ν ≥ −1/2. This is possible due to the Klein

four-group associated to the Schrödinger equation of the model. Having the Darboux duality for

this system allows us to extend the notion of the three classes of ladder operators described above,

now for any possible deformation of the AFF model. We have not considered spectrum-generating

algebras and supersymmetric extensions for these cases, so this remains as an open problem. Within

all this, the cases in which ν is a half-integer number are really special: When this happens, the

con�uent Darboux transformation is involved in some of the recipes for constructing rationally

extended potentials, and some rational extensions undergo signi�cant structural changes. Such

changes are re�ected both in the available energy levels, such as in the number of physical states,

and also in the kernels of the of spectrum-generating ladder operators, where now nonphysical

states and Jordan states appear.

On the other hand, systems very similar to these, but without the harmonic term, appeared in a

completely di�erent context, through the so-called PT regularization [Correa and Fring (2016); Ma-

teos Guilarte and Plyushchay (2017, 2019)]. These models are intimately related to the Korteweg-de

Vries equation due to the Lax pair formalism [Matveev and Salle (1991)] and help to provide new

types of solutions. It would be interesting to clarify if there is a generalization of the conformal

bridge for deformed systems, that could provide us a new knowledge related to integrable models.

d) Hidden symmetries in three-dimensional conformal mechanics

For this problem, we have considered a particle with electric charge e in a Dirac monopole back-

ground, i.e., a U(1) external vector potential A, the curl of which gives us the spherically symmetric

magnetic �eld produced by a monopole source with charge g, see details in [Sakurai (1994); McIn-
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tosh and Cisneros (1970); Labelle et al. (1991); Inzunza et al. (2020a)] and in the references cited

there. The particle was also subjected to a central potential of the form V (r) = α
2mr2 + mωr2

2 .

We investigated the possibility of obtaining hidden integrals of motion for this system, and we also

looked for a possible supersymmetric extension of this model.

It was found that the system has hidden symmetries when α = (eg)2. At the classical level, they

control the periodic nature of the trajectory, besides in the quantum case, these integrals reveal the

nature of spectrum degeneration of the system.

To construct the hidden integrals at the classical level, we have used the fact that the projection

of the particle's trajectory into the orthogonal plane to the Poincaré vector integral (the modi�ed

angular momentum of the system), is analogous to the orbit of the three-dimensional harmonic

oscillator. Actually, we demonstrated that this is a universal property of this background, i.e., if we

change the harmonic trap for an arbitrary central potential, the dynamics in the mentioned plane

will be the same that would occur in the absence of the monopole charge.

It is also necessary to emphasize that the system has the sl(2,R) symmetry and is connected

with an so(2, 1) invariant system previously analyzed in [Plyushchay and Wipf (2014)], by means of

the conformal bridge transformation. This brings us another way to get the integrals of the hidden

symmetries.

Inspired by the so-called �Dirac oscillator� proposed in [Moshinsky and Szczepaniak (1989); Ben-

tez et al. (1990); Quesne and Moshinsky (1990)], we introduced a special spin-orbit coupling term

into the Hamiltonian of our system in the monopole background (Chap. 9), and this naturally leads

us to the construction of a supersymmetric extension. The resulting model is a three-dimensional

realization of the osp(2|2) superconformal symmetry, and some of its interesting proprieties appear

in the following list:

� In the limit ν → 0, the Hamiltonian of our system takes the form

HDO =
1

2

(
p2 + ω2r2

)
I4×4 + ωΓ(σ · L+

3

2
) , Γ = σ3 ⊗ I2×2 .

which is identi�ed with the mentioned Dirac oscillator Hamiltonian in the non-relativistic

limit.

� In the limit ω → 0, our Hamiltonian operator is transformed into

Hdyon =
1

2

(
(p − eA)2 +

ν2

r2

)
I4×4 +

ν

r2
σ · rΠ− , Π± =

1

2
(1± Γ) ,

which is interpreted as the Pauli Hamiltonian of a supersymmetric dyon (c = 1) [Plyushchay

and Wipf (2014)]. This system has the exceptional superconformal symmetry D(2; 1, α) with

α = 1/2, which is larger than osp(2|2) superalgebra, so we believe that some important
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structures are still missing in our construction.

� The system has two classes of energy levels organized in two independent towers. The eigen-

values associated with one of these towers are in�nitely degenerate, while the energies in the

other tower have �nite degeneracy.

� Through the application of two di�erent dimensional reduction schemes, the system is trans-

formed into the super-extended AFF model. One scheme gives us the extended system in the

spontaneously broken supersymmetric phase, while the other scheme produces the system in

the exact supersymmetric phase.

This type of system opens an interesting line of research, which consists in exploring the su-

persymmetric structure of a Dirac Hamiltonian that breaks parity symmetry (since the Hermitian

supercharges of our model can be interpreted in this way), and searching for applications for systems

with in�nitely degenerate ground energy.
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Appendix A

Wronskian identities

Here we consider the equalities between wavefunctions and Wronskians in the sense of �up to a

multiplicative constant� when the corresponding constant is not essential.

A.1 Wronskian relations due to DCKA transformation

Suppose that we have two collections of (formal) eigenstates of (1.2.1), {φn} = (φ1, . . . , φn) and

{ϕl} = (ϕ1, . . . , ϕl). In the �rst step, we generate a Darboux transformation by taking the �rst

collection as the set of the seed states, and obtain the intermediate Hamiltonian operator with

potential V1 = V (x) − 2(lnW ({φn}))′′. In this way, the states of the second collection {ϕl} will

be mapped into the set of (formal in general case) eigenstates {Anϕl} = (Anϕ1, . . . ,Anϕl). Then,

employing these states as the seed states for a second Darboux transformation, we �nally obtain a

Schrödinger operator with a potential V2 = V1(x) − 2(lnW ({Anϕl}))′′. Having in mind that the

same result will be produced by a one-step generalized Darboux transformation based on the whole

set of the chosen eigenstates of the system L, we obtain the equality

W ({φn})W ({Anϕl}) = W (φ1, . . . , φn, ϕ1, . . . , ϕl) . (A.1.1)

Consider now the set of two states corresponding to a same eigenvalue λj , {φ2} = (φ1 = ψj , φ2 =

ψ̃j). In this case W (ψj , ψ̃j) = 1, and the corresponding intertwining operator reduces to A2 =

−(L− λj). Using this observation and Eq. (A.1.1), we derive the equality W (ψj , ψ̃j , ϕ1, . . . , ϕl) =

W ({ϕl}), which is generalized for the relation

W (ψ1, ψ̃1, . . . , ψs, ψ̃s, ϕ1, . . . , ϕl) = W ({ϕl}) . (A.1.2)

In the case when functions ϕ1, . . . , ϕl are not obligatorily to be eigenstates of the operator L, the
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last relation changes for

W (ψ1, ψ̃1, . . . , ψs, ψ̃s, ϕ1, . . . , ϕl) = W ({
∏s
k=1(−L+ λk)ϕl}) . (A.1.3)

In the context of generalized Darboux transformations based on a mixture of eigenstates and Jordan

states, a useful relation

W (ψ∗, ψ̃∗,Ω∗, Ω̆∗, ϕ1, . . . , ϕl) = W (ϕ1, . . . , ϕl) (A.1.4)

can be obtained by employing Eq. (A.1.3) with s = 1, and Eqs. (1.3.2) and (A.1.2), Here we imply

that ϕi with i = 1, . . . , l is the set of solutions of equation (1.2.1) with λi 6= λ∗.

A.2 Jordan states and Wronskian relations

We show here that the Wronskian (7.4.5) takes non-zero values and that it reduces to (7.4.9) in the

limit µ→ −1/2. For this, consider �rst a generic system (1.2.1) which has a set of the seed states

(φ1, φ2, . . . , φ2l−1, φ2l) with eigenvalues λ1 < λ2 < . . . < λ2l−1 < λ2l. Then the following relation

W (φ1, φ2, . . . , φ2l−1, φ2l) =

l−1∏
i=0

W (A2iφ2i+1,A2iφ2i+2) , (A.2.1)

can be proved by induction, where A0 = 1, and A2i with i ≥ 1 corresponds to the intertwining

operator associated with the scheme (φ1, . . . , φ2i). From (A.2.1) it follows that if each factor

W (A2iφ2i+1,A2iφ2i+2) does not have zeros, then the complete Wronskian neither has. To inspect

the properties of the Wronskian factors, we use the relation

W ′(A2iφ2i+1,A2iφ2i+2) = (λ2i+2 − λ2i+1)A2iφ2i+1A2iφ2i+2 , (A.2.2)

and integrate it from a to x,

W (A2iφ2i+1,A2iφ2i+2) = (λ2i+2 − λ2i+1)

∫ x

a

A2iφ2i+1A2iφ2i+2dζ + ω , (A.2.3)

where ω = W (A2iφ2i+1,A2iφ2i+2)|x=a. In the case when functions A2iφ2i+1, A2iφ2i+2 and their

�rst derivatives vanish in b, we �nd ω = −(λ2i+2 − λ2i+1)
∫ b
a
A2iφ2i+1A2iφ2i+2dζ, and then

W (A2iφ2i+1,A2iφ2i+2) = −(λ2i+2 − λ2i+1)

∫ b

x

A2iφ2i+1A2iφ2i+2dζ . (A.2.4)
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Relation (A.2.1) takes then the form

W (φ1, φ2, . . . , φ2l−1, φ2l) =

l−1∏
i=0

(λ2i+1 − λ2i+2)

∫ b

x

A2iφ2i+1A2iφ2i+2dζi . (A.2.5)

Analogously, one can consider a generic system, choose l solutions ϕi of Eq. (1.2.1), and

construct l corresponding Jordan states Ωi using Eq. (1.3.3). Assuming also that these states

satisfy relations (1.3.6), one can �nd that

W (ϕ1,Ω1, . . . , ϕl,Ωl) =

l−1∏
i=0

W (AΩ
2iϕi+1,AΩ

2iΩi+1) =

l−1∏
i=0

∫ b

x

(AΩ
2iϕi+1)2dζi , AΩ

0 = 1 (A.2.6)

and AΩ
2i is the intertwining operator associated with the scheme (ϕ1,Ω1 . . . , ϕl,Ωl) . Relation (A.2.6)

can be proved in a way similar to that for (A.2.5).

Let us turn now to the AFF model, where a = 0, b =∞, and choose the seed states in (A.2.1)

in correspondence with our picture: for i = 0, . . . , l − 1 we �x φ2i+1 = ψ−µ−m−1,ni+1
and φ2i+2 =

ψµ+m,ni+1−m. This identi�cation implies that λ2i+1 = E−µ−m−1,ni+1
, λ2i+2 = Eµ+m,ni+1−m,

and λ2i+2 − λ2i+1 = 4(µ + 1/2). These both functions and their �rst derivatives behave for

large values of x as e−x
2/2, and vanish at x = ∞. This behavior is not changed by applica-

tion of any di�erential operator with which we work. On the other hand, near zero we have

A2iψ−µ+m+1,ni+1
∼ x−µ−m−i and A2iψµ+m,ni+1−m ∼ xµ+m+1+i. Therefore, for small values of x,

A2iψ−µ+m+1,ni+1A2iψµ+m,ni+1−m ∼ x, and W (A2iψ−µ+m+1,ni+1 ,A2iψµ+m,ni+1−m) takes a �nite

value when x → 0+. Knowing this and Eq. (A.2.2), we employ the Adler method [Adler (1994)],

and use the theorem on nodes of wave functions to show that zeros and the minima and maxima of

the functions A2iψ−µ+m+1,ni+1
and A2iψµ+m,ni+1−m do not coincide, and that their corresponding

Wronskian is non-vanishing.

In the case µ = −1/2, we put ϕj = ψm−1/2,nj+1−n with j = 0, . . . , l − 1, and then we arrive at

the relations

W ({γµ})
(4µ+2)N

= (−1)l
l−1∏
i=0

∫∞
x

A2iψ−µ−m−1,ni+1
A2iψµ+m,nni+1

−mdζi , (A.2.7)

W ({γ}) =
l−1∏
j=0

∫∞
x

(AΩ
2jψm−1/2,nj+1−m)2dζj , (A.2.8)

where the sets {γµ} and {γ} are de�ned in (7.4.5) and (7.4.9). We note that both equations are

pretty similar each other, and if we suppose that A2i → AΩ
2i when µ→ −1/2, and take into account

the relation ψm−1/2,nj−m ∝ ψ−(m−1/2)−1,nj , one proves by induction that

lim
µ→−1/2

W ({γµ})
(4µ+ 2)N

∝W ({γ}) . (A.2.9)
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Appendix B

The mirror diagram

In this paragraph we prove the relations involved with mirror diagrams and Darboux duality using

the Wronskian identities of Appendix A

B.1 Harmonic oscillator case

To start, we consider a positive scheme {∆+} = (l+1 , . . . , l
+
n+

), where l+i with i = 1, . . . , n+ are

certain positive numbers ordered from low to high, and we supose that l+1 6= 0 . By using the

Wronskian identity (A.1.2) we get the relation

W ({∆+}) = W (0, 0̃, {∆+}) = e−x
2/2W (−1, {a−∆+}) , (B.1.1)

where in the last step we have used the identity (A.1.1)1, and {a−∆+} means that a− acts

in each state in the scheme. Let us repeat the trick a second time, obtaining W ({∆+}) =

e−x
2

W (−2,−1, {(a−)2∆+}). After l+1 times we get

W ({α}) = e−
l
+
1
2 x

2

W (−l+1 , . . . ,−1, 0, (l+2 − l
+
1 ), . . . , (l+n+

− l+1 ))

= e−
l
+
1 +1

2 x2

W (−(l+1 + 1), . . . ,−2︸ ︷︷ ︸
negative states

, (l+2 − l
+
1 − 1), . . . , (l+n+

− l+1 − 1)︸ ︷︷ ︸
positive states

) ,

where we have used the identity (A.1.1) with the ground state denoted by zero. So now, we have to

answer the question: Is l+2 − l
+
1 −1 equal to 0?. If the answer is negative, then we continue with the

trick described in (B.1.1) another l+2 − l
+
1 −1 times. On the other hand, if the answer is a�rmative,

we use again the identity (A.1.1) in order to do not have a ground state in the Wronskian of the right

hand side. This step is the responsible of the �missing� states in the negative scheme constructed

1For us, the Wronskian of a single function is the function itself, and a−ψ̃0 = ψ0(ix), which in our notations is
−1.
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in this way. We repeat the algorithm until positive eigenstates disappear in the right hand side,

obtaining the relation

W ({∆+}) = e
(l+n+

+1)x2/2
W (∆−) , ∆− = (−0̌, . . . ,−ň−i , . . . ,−l

+
n+

) , (B.1.2)

If one would like to start with the negative scheme, the algorithm is the same but instead of 0 and

0̃, is necessary to use the nonphysical states −0 and −0̃ in equation (B.1.1).

B.2 The case of AFF model with ν 6= `− 1/2

To show the mirror diagram for this case, we follow the same spirit of last subsection, but in this

case we have to use second order ladder operators. As a starting point, consider the Wronskian of

the set {α} de�ned in (7.3.1). If the states ψν,±0 and ψ−ν−1,±0 do not belong to (7.3.1), we can

replace the Wronskian W ({α}) by

W (ψν,±0, ψ−ν−1,±0, ψ̃ν,±0, ψ̃−ν−1,±0, {α}) = e∓x
2

W (ψν,∓0, ψ−ν−1,∓0, {C∓ν α}) , (B.2.1)

where we used relations (A.1.1), (A.1.2), (7.1.11) and (7.1.12), and {C∓ν α} means that the ladder

operators are applied to all the states in the set. On the other hand, if ψr(ν),±0 belong to (7.3.1),

we can replace the Wronskian of the initial set of the seed states by

W (ψr(−ν−1),±0, ψ̃r(−ν−1),±0, {α}) = e∓x
2

W (ψr(−ν−1),∓0, {C∓ν β1}) , (B.2.2)

where {β1} is the scheme {α} with the omitted state ψr(ν),±0. Finally, if ψν,±0 and ψ−ν−1,±0 belong

to (7.3.1), we have

W ({α}) = e∓x
2

W ({C∓ν β2}) , (B.2.3)

where {β2} is the scheme {α} with the omitted states ψν,±0 and ψ−ν−1,±0. Note that in all these

three relations we have lowered or raised the index of the states in {α}, and also in the case of Eqs.

(B.2.1) and (B.2.2) we have included additional states which do not belong to the initial set. Also,

we note that an exponential factor has appeared. These identities can be applied to the Wronskians

on the right hand side of Eqs. (B.2.1)-(B.2.3), which will contribute with new exponential factors

in new Wronskians, and so on. For this reason, if we restrict the initial set {α} by the conditions

described above (that every state in the set has the second index of the same sign), and we repeat

this procedure nN +1 times with positive (negative) sign of the indexes in (B.2.1)-(B.2.3), we �nally

obtain equation (7.3.3) or (7.3.4).
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B.3 The case of AFF model with ν = `− 1/2

To obtain the dual schemes in the half-integer case, we analyze �rst the relations that exist between

ofH−1/2 andH−1/2+`. The latter are given by the dual schemes (ψ−1/2,±0, . . . , ψ−1/2,±(`−1)), whose

Wronskians are

W (ψ−1/2,±0, . . . , ψ−1/2,±(`−1)) = x`
2/2e∓`x

2/2 . (B.3.1)

The corresponding intertwiners map eigen- and Jordan states of H−1/2 to those of H−1/2+`. If we

choose the scheme with positive indexes, some of these mappings useful for the following are given

by

A−` ψ−1/2,n = ψ−1/2+`,n−` , A−` Ων,−1/2 = Ω−1/2+`,n−` , n ≥ ` , (B.3.2)

A−` Ω−1/2,l = ψ−(−1/2+`)−1,l , < ` , (B.3.3)

where A−` and its Hermitian conjugate A+
` are the intertwining operators of the chosen Darboux

transformation. On the other hand if we take the scheme with negative sign in indices, we obtain

another intertwining operators B±` , which satisfy the relation B±` = (i)`ρ2(A±` ), i.e, their action on

eigenstates and Jordan states can be obtained by application of ρ2 to the relations that correspond

to the action of A±m.

Now, to derive the dual schemes let us assume that we have a collection of non-repeated seed

states of the form (ψ−1/2,0, . . . , ψ−1/2,`−1, {ϑ−1/2}), where {ϑ−1/2} contains N1 arbitrary physical

states ψ−1/2,ki with ki > ` − 1 for i = 1, . . . , N1, and N2 arbitrary Jordan states of the form

Ω−1/2,lj with j = 1, . . . , N1. In the same way as we did in Sec. 7.3, we de�ne nN as the largest

of the numbers nN1
and nN2

, and also we suppose for simplicity that the signs of both ki and

kj are positive. Then we use (A.1.1) and (B.3.1) to write W (ψ−1/2,0, . . . , ψ1/2,`−1, {ϑ−1/2}) =

x`
2/2e−`x

2/2W ({A−` ϑ−1/2}). The next step is to use the extension of the dual schemes for ν = −1/2,

i.e, we change each function of the form ψ−ν−1,n by Ω−1/2,n in equation (7.3.3), and use it to rewrite

this last Wronskian relation as

W (A−` {ϑ−1/2}) = x−`
2/2e−(nN+1−`/2)x2

W ({∆(−1/2)
− }) , (B.3.4)

where ∆
(−1/2)
− is the dual scheme of (ψ−1/2,0, . . . , ψ−1/2,`−1, {ϑ−1/2}) given by

{∆(−1/2)
− } = (ψ−1/2,−0, . . . , ψ−1/2,−(`−1), {ϑ−−1/2}) , (B.3.5)
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and

{ϑ−−1/2} = (ψ−1/2,−`,Ω−1/2,−0, . . . , ψ̌−1/2,−sj , Ω̌−1/2,−ri , . . . , ψ−1/2,−nN ,Ω−1/2,−nN ) . (B.3.6)

Here, as well as in the non-half-integer case, the marked functions ψ̌−1/2,−sj and Ω̌−1/2,−ri indicate

the omitted states with sj = nN − lj and ri = nN − ki. In the last step, we use Eqs. (A.1.1) and

(B.3.1) with the negative sign to write the equalityW ({∆(−1/2)
− }) = x`

2/2e`x
2/2W (B−` {ϑ

−
−1/2}) and

as analog of (B.3.4) we obtain

W (A−` {ϑ−1/2}) = e−(n′N+1)x2

W (B−` {ϑ
−
−1/2}) , n′N = nN − ` . (B.3.7)

This relation is the dual scheme equation for the case ν = ` − 1/2. By means of (B.3.2) and its

analogs for B−` obtained by the application of ρ2, we conclude that in the scheme of the left hand side

of the equation there are N1 physical states of the form A−` ψ−1/2,ki = ψ`−1/2,ki−`, and a mixture of

N2 Jordan states and formal states produced by ρ2 distributed in the following way: we have Jordan

states A−` Ω−1/2,li = ψ`−1/2,li when li < ` − 1, and formal states A−` Ω−1/2,li = ψ`−1/2,li−` when

li ≥ `. The omitted states in the scheme on the right hand side are B−` ψ̌−1/2,−sj = ψ̌−1/2+`,−(sj−`)

and B−` Ω̌−1/2,−rj = ψ̌−`−1/2,−rj (B
−
` Ω̌−1/2,−rj = ψ̌−`−1/2,−(rj−`) ) when rj ≤ `− 1 (rj > `). Note

that the largest index in both sides of the equation is now given by n′N = nN − `. In comparison

with the non-half-integer case, this is the same result that we would obtain if we consider equation

(7.3.3) in the non-half-integer case, and then formally change the states of the form ψ−ν−1,li by

Ω−`−1/2,li−` when li ≥ ` in the limit ν → `− 1/2.

Relation analogous to (7.3.4) would be obtained if we start from the case ν = −1/2 with a

scheme composed from the eigenstates and Jordan states produced by ρ2, and then apply the same

arguments employed for the case analyzed above.
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Appendix C

Details for rationally extended

systems

Here we show some operator identities, as well as the explicit form of some polynomials in nonlinear

algebras considered in the Chap. 6.

C.1 Operator identities (6.1.8)

We have equalities ker (A+
(−)A

−
(+)) = ∆+ ∪ δ̃ = {0, 1, . . . , n}, where δ̃ = {A+

(−)A
−
(+)ψ̃−l1 , . . . ,

A+
(−)A

−
(+)ψ̃−ln− }, and relation A+

(+)A
−
(−)ϕn ∝ (a+)Nϕn following from (6.1.3) is used. The �rst

identity from (6.1.8) follows then from equality kerA+
(−)A

−
(+) =ker(a−)N [Cariñena and Plyushchay

(2017)].

In the second relation in (6.1.8), functions f(η) and h(η) are the polynomials

f(η) ≡
∏

l−k −n+<0

(η + 2l−k + 1), h(η) ≡
∏

ň−k −n+≥0

(η + 2ň−k + 1) , (C.1.1)

where l−k ∈ ∆− and ň−k are the absent states in ∆−. Using the mirror diagram technique [Cariñena

et al. (2018)], we obtain the equality ker f(L(−))A
−
(+)(a

+)n− = kerh(L(−))A
−
(−)(a

−)n+ , where

ker f(L(−))A
−
(+)(a

+)n− = span{0, . . . , (n+ − 1),−0, . . . ,−(n− − 1),

{ ˜(ň+
i − n+)}, {− ˜(ň−j − n−)} } .

(C.1.2)

Indexes i and j are running here over the absent states of both schemes, provided the conditions

ň+
i − n+ ≥ 0 and ň−j − n− ≥ 0 are met. A special case corresponds to the positive scheme

∆+ = (l+1 , l
+
1 +1, . . . , l+1 +q), for which the dual negative scheme is ∆− = (−(q+1), . . . ,−(q+ l+1 )).

Here n+ = 1+q and n− = l+1 , there are no states to construct polynomials (C.1.1), and we just put
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f(η) = h(η) = 1. Analogously, there are no tilted eigenstates in (C.1.2) in this case. In particular, if

n+ is an even number, then the DCKA transformation will produce a deformed harmonic oscillator

with one-gap of size 2(l−1 + q + 1) = 2N in its spectrum, while if q is an odd number and l+1 = 1,

then we generate a gapless deformation of Liso1 (by introducing the potential barrier at x = 0).

C.2 Relations between symmetry generators

We �rst show explicitly how the three families appear by considering the commutators

[C−N+l,A
−
k ] = Pn−(η)|η=L(+)+2k

η=L(+)
C−N+k+l , [C+

N+l,B
+
k ] = Pn−(η)|η=L(−)−2l

η=L(+)
C+
N+k+l ,

[A+
k ,C

−
N+l] = (−1)n−Tk(L(−))A

−
N+l−k − Pn−(L(+))Tl(L(+) + 2l)C−N+l−k ,

[B−k ,C
+
N+l] = (−1)n−Tk(L(+) + 2k)B+

N+l−k − Tl(L(−))Pn+(L(−) − 2l)C+
N+l−k ,

[C+
N+k,C

−
N ] = Pn+(L(−) − 2k)A−k − Pn−(L(−) + 2N)B−k ,

[C±N±k,C
±
N±l] = 0 , ≥ 0 ,

(C.2.1)

where polynomials Pn±(η) and Tk(η) are de�ned by Eqs. (6.1.5) and (6.1.7). These commutators

should be interpreted as recursive relations which generate the elements of the three families of

the ladder operators proceeding from the spectrum-generating set of operators with l = r(N, c)

and k = c. On the other hand, the commutators of the ladder operators with their own conjugate

counterparts are

[A−k ,A
+
k ] = Pn−(η − 2k)Pn−(η)Tk(η)|η=L(−)+2k

η=L(−)
,

[B−k ,B
+
k ] = Pn+(η − 2k)Pn+(η)Tk(η)|η=L(+)+2k

η=L(+)
,

[C−N±k,C
+
N±k] = Pn−(η)Pn+(x− 2k)Tk(η)|η=L(+)±2k

η=L(−)
.

(C.2.2)

In this way, we obtain a deformation of sl(2,R) in (6.2.3).

Below we present some relations between lowering ladder operators, from which analogous re-

lations for raising operators can be obtained via Hermitian conjugation.

The de�nitions of the three families automatically provide the following relations:

A−N+k = (−1)n−Pn−(L(−))C
−
N+k , B−N+k = (−1)n−C−N+kPn+

(L(+)), (C.2.3)

C−N−(N+k) ≡ C−−k = (−1)n−Pn+(L(−) + 2N)A+
k , (C.2.4)

C−2N+l+k = (−1)n−C−N+lC
−
N+k , (C.2.5)

(C−N+k)2 = (−1)n−C−2N+2k , (C.2.6)

where k, l = 0, 1, . . .. Eq. (C.2.3) means that operators of families A and B with index k ≥ N are

essentially the operators of the C family. Eq. (C.2.4) shows that operators of the form C±−k are

not basic. If in (C.2.5) one �xes l = r(N, c), then all the operators with index equal or greater
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than N + r(N, c) reduce to the products of the basic elements. Finally, Eq. (C.2.6) means that

the square of an operator of C-family with odd index N + k is a physical operator, but not basic.

The unique special case is when c = 2, N is odd, and k = 0 since there is no product of physical

operators of lower order which could make the same job. From here we conclude that the basic

operators are given by (6.2.1).

For one-gap systems we can use the second equation in (6.1.8) (where f(η) = h(η) = 1) to �nd

some relations between operators with indexes less than N :

C−n+−k = (−1)n−A−n+−kTk(L(−)) , C−n−−k′ = (−1)n−B−n−−k′Tk
′(L(−) + 2(n+ − k′)) ,

A−n++k′ = (−1)n−C−n++k′Tk′(L(−)) , B−n−+k = (−1)n−C−n−+kTk(L(−) + 2n+) ,
(C.2.7)

where k = 0, . . . , n+ and k′ = 0, . . . , n−. By considering the ordering relation between n− and n+,

we can combine relations (C.2.7) to represent operators of the A family in terms of B family or

vice-versa. For the case n− < n+ we have

B−n+−k = T(n+−n−−k)(L(−) + 4n+ − 2k)Tk(L(−) + 2n+)A−n+−k , (C.2.8)

where k = 0, . . . , n+−n−. In other words, only �rst n−−1 operators are basic. In the case n− = 1,

there exist no basic elements in the B-family. As examples corresponding to this observation we

have all the deformations produced by a unique nonphysical state of the form ψ−n(x). On the other

hand, in the case n+ < n− we have

A−n−−k = Tk(L(−) + 2N)T(n−−n+−k)(L(−) + 2(n− − k))B−n−−k , (C.2.9)

where k = 0, . . . , n−−n+. According to this, only �rst n+− 1 elements cannot be written in terms

of the operators of B family. The unique case in which there exist no basic elements of the families

A or B is when n− = n+ = 1, which corresponds to the shape invariance of the harmonic oscillator.

As a �nal result, the basic elements of the three families are given by (6.2.5).

We consider now the relations between Darboux generators A−(±)(a
±)n and A−(±)(a

∓)n. Using

the �rst relation in (6.1.8) and the de�nition of operators C±N+l, we obtain relations

A−(−)(a
−)N+l = (−1)n−Pn−(L(−))A

−
(+)(a

−)l , A−(+)(a
+)N+l = (−1)n−Pn+

(L(+))A
−
(−)(a

+)l ,

A−(+)(a
−)N+l+k = (−1)n−C−N+lA

−
(+)(a

−)k , A−(−)(a
+)N+l+k = (−1)n−C+

N+lA
−
(−)(a

+)k ,

where k, l = 0, 1, 2, . . .. If we �x l = r(N, c), then one �nds that the basic elements are just (6.2.6).
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On the other hand for one-gap systems, with the help of (6.1.8) one can obtain relations

A−(−)(a
−)n++k = (−1)n−A(+)(a

+)n−−kTk(L) , (C.2.10)

A−(+)(a
+)n−+k′ = (−1)n−A−(−)(a

−)n+−k′Tk′(L+ 2k′) , (C.2.11)

with k = 0, . . . , n− and k′ = 0, . . . , n+. These relations reduce the basic subsets of Darboux

generators to (6.2.7).

C.3 (Anti)-Commutation relations for one-gap systems

In this Appendix we summarize some (anti)commutation relations for one-gap deformations of

harmonic oscillator systems.

For the anticommutator of two fermionic operators in (6.3.2) we have

Pz =

 Pn−(η)T|z|(η)
∣∣
η=H+2|z|Π−+λ−

−N < z ≤ 0

Pn−(η)Tz(η + 2z)
∣∣
η=H−2|z|Π−+λ−

0 < z ≤ n+

, (C.3.1)

and for the positive scheme

P′z =

 Pn+(η)T|z|(η − 2z)
∣∣
η=H′−2|z|Π−+λ+

−N < z ≤ 0

Pn+(η)Tz(η)
∣∣
η=H′+2|z|Π−+λ+

0 < z ≤ n−
. (C.3.2)

By virtue of the relation between dual schemes, the expression P′z(H′, σ3) = PN−z(H′+N(1+σ3)−

λ− + λ+, σ3) helps to complete the set of polynomials.

For the negative scheme we also have

[G(2θ(z)−1)
−k ,Q0

a] =
1

2
Pn−(η)|η=H+λ−+2|z|

η=H+λ−
(Qza − (2θ(z)− 1)iεabQzb) , (C.3.3)

where z ∈ (−N, 0) ∪ (0, 2N), while for the positive scheme, where Q′za = QN−za and G
′(1)
±k = G(1)

±k

when k ≥ N , we have

[G
′(2θ(z)−1)
−z ,Q

′0
a ] =

1

2
Pn+(x)|x=H′+λ++2|z|

x=H′+λ+
(Q
′z
a + (2θ(z)− 1)iεabQ

′z
b ) , (C.3.4)

where z ∈ (−N, 0) ∪ (0, 2N). On the other hand, for the negative scheme the relation [G(1)
z ,Qza] =

Vz(H)
2 (Q0

a + i(2θ(z)− 1)εabQ0
b) is valid, where
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Vz =



Pn−(η)Tz(η)
∣∣η=H+λ−−2z

η=H+λ−
, −N < z < 0 ,

Pn−(η)Tz(η + 2z)
∣∣η=H+λ−

η=H+λ−−2z
, 0 < z ≤ n+ ,

Pn+(η)TN−z(η)
∣∣η=H+λ−+2N

η=H+λ−+2(N−z) , n+ < z ≤ N ,

Pn+
(η)Tz(η + 2z)

∣∣η=H+λ−+2N

η=H+λ−−2z
, N < z < 2N .

(C.3.5)

In the positive scheme we have [G
′(1)
z ,Q′za ] =

V′z(H′)
2 (Q′0a − i(2θ(z) − 1)εabQ

′0
b ), where V ′z(H′) are

given by

V ′z =



Pn+(η)Tz(η + 2z)
∣∣η=H′+λ+

η=H′+λ+−2z
, −N < z < 0 ,

Pn+(η)Tz(η)
∣∣η=H′+λ+

η=H′+λ+
, 0 < z ≤ n− ,

Pn−(η − 2N)TN−z(η − 2z)
∣∣η=H′+λ++2z

η=H′+λ+
, n− < z ≤ N ,

Pn−(η)Tz(η)
∣∣η=H′+λ++2z

η=H′+λ+−2N
, N < z < 2N .

(C.3.6)

These are the missing relations which prove that the subsets U (2θ−1)
0,z de�ned in (6.3.10), satisfy

closed superalgebras independently of choosing the scheme. On the other hand, we can use them

to prove that the subsets I(2θ−1)
N,z given in (8.1.16) also produce closed superalgebras. Other useful

relations are

[G(1)
−(N+l),Q

N+k
a ] =

1

2
Tk(η)Pn+

(η + 2k)|η=H+λ−+2(N−k)
η=H+λ−

(Ql−ka + iεabQl−kb ) , (C.3.7)

where l > k and l − k ≤ n+. For l < k we have

[G(1)
−(N+l),Q

N+k
a ] = Pn−(H+ λ−)(Qk−la + iεabQk−lb ) , (C.3.8)

and also we can write [G(1)
±(N±k),G

(1)
±(N±l)] = 0 for any values of k and l.

C.4 List of polynomial functions for Sec. 6.5

Eq. (6.5.7) : Pα,β(H) = −P−α,−β(H− 2(α+ β)), and

P−1,1 = H(6H− 20)− 8Π−(H− 3) , P−1,−2 = −2H+ 12(1−Π−) , P−1,+2 = 10(H− 4)− 12Π− ,

M−1,+2 = 12 , P−1,−3 = P−2,−3 = −6 , P−1,+3 = −12 ,

M−1,+3 = 24 , P−1,−4 = P−2,−4 = −8 , P−1,+4 = 16(H− 5−Π−) ,

P−1,−5 = P−2,−5 = −10 , P−1,+5 = 20(H− 6−Π−) ,
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P−2,+2 = (H− 4)[8H(2H− 7) + Π−(4H2 − 44H+ 192)] , P−2,+3 = −18H+ 96− 4(H− 30)Π− ,

M−2,+3 = M−2,+4 = −96 , P−2,+4 = −2(11H−Π−) + 136 ,

P−2,+5 = 1104− 340H+ 26H2 + Π−(576− 104H+ 10H2) , P−3,+4 = 24H− 144 + Π−(2H− 76) ,

M−3,+4 = 848 , P−3,+5 = 30H− 180 + Π−(8H− 180) ,

M−3,+5 = 960 ,

P−4,+5 = 40(32− 10H+H2 −Π−(7H− 32)) , M−4,+5 = −5760 ,

P−4,+4 = 4[7H3 − 56H2 + 116H+ 32 + Π−(H3 − 64H2 + 572H+ 1472)] ,

P−5,+5 = 2(320− 2848H+ 1268H2 − 248H3 + 23H4)+

8Π−(10000− 6212H+ 1492H2 − 187H3 + 12H4) .

Eq. (6.5.8) : Fα,β(H) = −F−α,−β(H− 2(α+ β)), and

F+1,−1 = F−1,+3 = 0 , N+1,−1 = −F−1,−2 = −N−2,+1 = 2 , F−2,−1 = F−2,−2 = −4 ,

F−1,+2 = −N−1,+3 = 6 , F−1,+4 = F−2,+1 = 8 , F−1,+5 = 10 ,

N−1,+2 = F−2,+3 = −12 , F−2,+4 = −16 N−2,+3 = N−2,+4 = 48 ,

F−1,+1 = 4(H− 3) , F−2,+5 = 24(H− 7) , F−2,+2 = 12(H− 4)2 ,

while other elements are zero. Eq. (6.5.12) : Cα,β = Cβ,α , and

C−2,−1 = G(1)
+1 (H− 6) + 8G(0)

+1 , C−2,0 = G(1)
−2 + 4G(0)

−2 ,

C−2,1 = −(H− 4Π−)G(1)
−3 , C−2,2 = (H+ 4Π−)G(1)

−4 ,

C−2,5 = G(1)
−7 = −G(1)

−3G
(1)
−4 , C−1,0 = G(1)

−1 + G(0)
−1 ,

C−1,1 = −G(1)
−2 + 2G(0)

−2 , C−1,4 = G(1)
−5 ,

C−1,5 = G(1)
−6 = −(G(1)

−2)2 , C1,2 = −(H− 2)(G(1)
−1 + 6G(0)

−1) ,

C1,3 = −G(1)
−2 + 6G(0)

−2 , C1,4 = (H− 4σ3)G(1)
−3 ,

C1,5 = (H− 4− 10Π−)G(1)
−4 , C2,3 = (H− 2)G(1)

−1 − 12(H− 4)G(0)
−1 ,

C2,4 = (H− 2)G(1)
−2 − 16(H+ 3)G(0)

−2 , C2,5 = ((H− 2)(H− 4)− 8(H− 5)Π−)G(1)
−3 ,

C3,4 = (H− 2)G(1)
−1 − 16(H− 5)G(0)

−1 , C3,5 = −(H+ 2)G(1)
−2 − 20(H− 4)G(0)

−2 ,

C4,5 = [(H− 2)(H+ 6)− 2Π−(12H− 117))G(1)
−1 − 720G(0)

−1 .
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Eq. (6.5.13) :

Q1
1,−2 = 2 , Q2

1,−2 = 5 , Q1
2,3 = 7(40−H) , Q2

2,3 = −3 ,

Q1
1,−2 = 2 , Q2

1,−2 = 5(H− 4) , Q1
2,4 = −10(H− 6) , Q2

2,4 = −4 ,

Q1
1,−1 = −1 , Q2

1,−1 = 3H− 10 , Q1
2,5 = (336− 118H+ 11H2) , Q2

2,5 = 5 ,

Q1
1,2 = 5(H− 4) , Q2

1,2 = H , Q1
3,1 = 3 , Q2

3,1 = 1 ,

Q1
1,3 = −10 , Q2

1,3 = −6 , Q1
3,2 = −8(H− 3) , Q2

3,2 = 4 ,

Q1
1,4 = 7(H− 36) , Q2

1,4 = 4 , Q1
4,1 = 2 , Q2

4,1 = −1 ,

Q1
1,5 = 9(H− 56) , Q2

1,5 = 5 , Q1
4,2 = 10(3−H) , Q2

4,2 = −5 ,

Q1
2,−2 = −2 , Q2

2,−2 = 4(H− 4)(2H− 7) , Q1
5,1 = 5 , Q2

5,1 = 3 ,

Q1
2,−1 = −1 , Q2

2,−1 = 5(H+ 2) , Q1
5,2 = 6(H− 1) , Q2

5,2 = 3 .

Eq. (6.5.14) :

G1
1,−2 = −1 , G2

1,−2 = (8−H) , G1
2,−2 = −1 , G2

2,−2 = (H+ 8)(H− 6) ,

G1
1,−1 = 1 , G2

1,−1 = (4−H) , G1
2,−1 = 1 , G2

2,−1 = 4−H ,

G1
1,0 = G2

1,0 = 1 , G1
2,0 = −G2

2,0 = 1 , G1
1,1 = H− 4 , G2

1,1 = −1 ,

G1
2,1 = H− 2 , G2

2,1 = H , G1
1,2 = H− 4 , G2

1,2 = H ,

G1
2,2 = −1 , G2

2,2 = H , G1
1,3 = G2

1,3 = −1 , G1
2,3 = 4−H ,

G2
2,3 = −1 , G1

1,4 = H− 4 , G2
1,4 = −1 , G1

2,4 = 2−H ,

G2
2,4 = 1 , G1

1,5 = H− 4 , G2
1,5 = −1 , G1

2,5 = (H− 2)(H− 4) ,

G2
2,5 = −1 .
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