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Resumen

En este trabajo, estudiamos la dinámica fuera del equilibrio de una cadena de spin-1 siguiendo un protocolo de
quantum quench. El modelo en espećıfico estudiado es una cadena XY-spin-1 con anisotroṕıa. Estudiamos las
escalas de tiempo relevantes y la evolución del Loschmidt echo, observables y entroṕıas bipartitas. Exploramos
posibles parámetros de orden para caracterizar la dinámica, y el rol de la simetŕıa de paridad del modelo
en la distribución de la información mutua. Identificamos con éxito parámetros de orden adecuados para
caracterizar la dinámica emergente. Adicionalmente, brindamos una introducción pedagógica a conceptos
centrales de la teoŕıa de información clásica y cuántica, tales como la entroṕıa de Shannon, información
mutua y quantum discord.

Palabras clave: Protocolo de quench, cadena de spin-1 no integrable, transición de fase dinámica cuántica,
información cuántica.



Abstract

In this work, we study the out of equilibrium dynamics of a in general non-solvable finite spin-1 chain following
a protocol of quantum quench. The specific model studied is the XY-spin-1 chain with single-ion anisotropy.
We study the relevant time scales and the evolution of Loschmidt echo, observables and bipartite entropies.
We identify signatures of a dynamical quantum phase transition. We also explore possible order parameters
for characterizing the dynamics, and the role of the models parity symmetry on the mutual information
distribution. We succeeded in identifying adequate order parameters characterizing the emerging dynamics.
Additionally, we give a pedagogical introduction to central concepts of classical and quantum information
theory, such as the Shannon entropy, mutual information and quantum discord.

Keywords: quench protocol, non-integrable spin 1 chain, dynamical quantum phase transitions, quantum
information.
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Chapter 1

Introduction

In this work we study the out of equilibrium quantum dynamics in a XY-SPIN-1 finite chain following
a protocol of quantum quench. The work done is theoretical, and to the best knowledge of the author
corresponds to a previously unsolved problem.

We explain the motivation of the work, and put it into context within the relevant literature in the first
section Motivation for the work.

The proposed work for this Thesis, and the main problems to be studied are presented in Proposal.

We show the methods used in the second section Methods. We explain the methods used to study the
dynamical evolution of the system in System evolution; we give a short introduction to both classical and
quantum information in Concepts of Classical Information and Concepts of Quantum Information; we explain
the methods used to study entropy related properties in the chain in Entropies and Correlations.

The required resources for the development of the work are presented in Resources.
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1.1 Motivation for the work

Quantum simulators [1, 2] open new lines of research with applications to many-body quantum systems and
quantum chemistry [3]. Due to the exponential growth of the Hilbert Space in many-body systems [4, 5] an
exact study of out of equillibrium dynamics becomes quickly intractable with classical computers. However,
this study is experimentally possible with quantum simulators. Several experimental platforms exist, which
are based on quantum superconducting circuits [6–9], trapped ions [10], trapped atoms [11] and ultra cold
atoms [12, 13].

Despite the advantages offered by these quantum simulators, the study of many-body quantum systems
making use of classical tools remains of interest [14]. Of special interest is the determination of universal
properties shared by many-body quantum systems independently of their microscopic constituents [15]. For
example, dynamical quantum phase transitions that can be characterized with suitable order parameters [16].

The XY-SPIN-1 chain model studied in this thesis, was chosen due to its similar structure to the Jaynes-
Cummings Hubbard [17, 18] and Bose-Hubbard models [19]. All three models consist of a local non-linear
term in each site of the lattice plus an interacting hopping term between sites, but their constituents are
of different microscopic nature. The Jaynes-Cummings Hubbard treats with two-level atoms in cavities, the
Bose-Hubbard model treats spinless bosons, whereas the proposed XY-SPIN-1 model treats spin-1 particles.
Due to the difference in its microscopic components the selection of the model obeys the aforementioned
search for universality in the out of equilibrium dynamics of many-body systems.

In this direction, one of the main objectives of this work is to identify an order parameter quantifying a
dynamical quantum phase transition following a protocol of quantum quench, similar to the documented in
previous works [16, 20].

A salient feature of many-body quantum systems is entanglement [21–24]. One of the main motivations
to study entanglement in quantum systems, is that it can be used as a resource for quantum computation
algorithms [24], which can not be created with Local Operations and Clasical Comunication (LOCC) [25].
Furthermore, entropies and entanglement related measurements have been used to characterize out of equil-
librium dynamics and quantum phase transitions in the Bose-Hubbard model [26] and Heisenberg Spin 1/2
chains [27–32]. Therefore, the study of entropy and entanglement related quantities in spin-1 models is of
interest.

A further motivation is the recent successful simulation of an Spin-1 model with single-ion anisotropy in a
platform based on ultra cold atoms [33]. The model simulated in the work of Chung et. al., only differs from
the proposed model in an interaction term of the spin-z component of adjacent spins in the lattice. Therefore,
the methods developed in this work can be used in the future to characterize the out of equilibrium dynamics
of the model studied in [33].
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1.2 Proposal

In this work we will study the out of equilibrium dynamics of a in general non-solvable spin-1 finite chain.
The out of equilibrium dynamics will be generated following a protocol of quantum quench. In general, in a
quantum quench protocol [34] the system is initialized in the ground state |ψ0〉 of some initial Hamiltonian
H0 ≡ H(λ0), at a value λ0 of some tunable parameter λ of a more general Hamiltonian H(λ). Then at a
time t, say t = 0, this parameter λ is suddenly change to a new value λf . If the initial state |ψ0〉 is not an
eigenstate of H(λf ) then a non-trivial out of equilibrium dynamics emerges.

The spin-1 model consider here is an specific case of the most general XXZ-spin-1 Heinsenberg chain

H =
∑
〈i,j〉

[
J(Ŝxi Ŝ

x
j + Ŝyi Ŝ

y
j ) + Jz(Ŝ

z
i Ŝ

z
j )
]

+ p
∑
i

(Ŝzi )2. (1.2.0.1)

The ground state of this model has been well studied in the past, and its phase diagram is now well known
[35]. A recent work studied several different quench dynamics in this model with long-chains [36]. Also, the
different quantum phase transitions for the case p = 0 have been characterized in terms of quantum discord
and quantum coherence in [37].

Here, we will focus on the model with Jz = 0, and both the interaction between spins, and the local anisotropy
are negative

H = −p
N∑
i=1

(Ŝzi )2 − J
N−1∑
i=1

(Ŝxi Ŝ
x
i+1 + Ŝyi Ŝ

y
i+1). (1.2.0.2)

Recently the out of equilibrium dynamics of a very similar model was experimentally studied in [33]. The
difference with our model appears in the value of Jz = J in their model. The main observable studied in their
experimental setup was the longitudinal spin alignment A ≡ 2− 3〈(Ŝz)2〉. To the best of our knowledge, the
emerging dynamics following a quench protocol of the model we proposed has not been studied before. We
will focus on the cases of lattices with N = 2 and N = 3 sites.

In our quench protocol p is a fix parameter, and J will be the tunable parameter. Therefore, our Hamiltonian
H is given as a function of J , H = H(J). We initially set J0 = 0 and initiate the system in the eigenstate of
H(0) with a longitudinal spin alignment of 2. We will study the emerging dynamics of the unitary evolution
that follows from the full Hamiltonian (1.2.0.2) acting on the initial state for different values of Jf . We
remark that our initial state is completely classical, in the sense that any measure of quantum information
on it is 0.

We first ask, is it possible to obtain with this model a maximally entangled state of two spins starting from a
completely classical state? We find that it is indeed possible. We give a detailed analysis of the entanglement
evolution in chapter 2 Results, specifically in the sub-section Bipartite Entropies.

In order to determine a proper dynamical order parameter, we analyze the time average of spin-z correlations.
We also analyze the time average of the bipartite entropies. As we are interested in the averages taken over
some time T , we ask ourselves, which is the value of T that will give us the most information about the
emerging dynamics? As commented in the reference [16], we expect that the time at which finite-size effects
start to dominate the dynamics will be important, and therefore we do a thorough study of the different
emerging time-scales thorough the J/p spectrum. In the sub-sections Effective Hamiltonian and States and
observables evolution of Trimer in chapter 2, we explore the origins of the different emerging time scales
of the trimer. We also compare the information that both the two point spin-z correlation functions, and
the bipartite entropies averages give of the different emerging dynamical regimes in the subsections Spin-z
Correlations and Bipartite Entropies.

Furthermore, we will explore signatures of a dynamical-quantum phase transition (DQPT) in our finite chains.
In general a DQPT is characterized by non-analicities in the rate function λ(t) of the Loschmidt echo L(t)
defined as λ(t) ≡ − ln(L(t))/N in the thermodynamic limit (i.e. N → ∞) [34]. In general, it is uncertain
weather or not the non-analicities in the rate function will occur in a finite model if a DQPT occurs in

3



the thermodynamic limit, or if a DQPT will occur in the thermodynamic limit if non-analicities in the rate
function appear in the finite case. For example, in a very recent study in the out of equilibrium dynamics of
the 1-D transverse field Ising model, it was found that in the finite chain non-analicities in the rate functions
appeared only for discrete values of the quench parameters [38]. We will explore if non-analicities appear
in the evolution of the rate function of our spin-1 model, and if they appear only for discrete values of J/p
or in a continuum spectrum of it. We present our results of this exploration in the subsections States and
Observables Evolution of chapter 2.

Finally, we will also explore how the mutual information is distributed in the chain for the different emerging
dynamical regimes. We will try to define the role of the parity symmetry of the system in how it is distributed.
We present tentative results on this topic in the subsection Mutual Information of chapter 2.

In the methods section, we show the basic methods that we used to study the evolution of a many-body
spin-1 system. We give a pedagogical introduction to simple fundamental concepts of both classical and
quantum information theory.
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1.3 Methods

1.3.1 Spin 1 Operators

Spin operators, Sα with α = x, y, z; are Hermitian operators that satisfy the commutation relations [39][
Ŝα, Ŝβ

]
= i~

∑
γ=x,y,z

εαβγ Ŝ
γ for any α, β = x, y, z. (1.3.1.1)

Where εαβγ is the Levi-Civita tensor which satisfies

εαβγ =


1 for even permutations of x, y, z

−1 fir odd permutations of x, y, z

0 otherwise

(1.3.1.2)

Spin operators act on the (2S + 1) Hilbert Space HS and Ŝ2 ≡ Ŝx
2

+ Ŝy
2

+ Ŝz
2

= S(S + 1)1. The most
common basis used is the set of eigenstates of the Ŝz spin-z operator, {|ψσ〉}, which satisfy

Ŝz |ψσ〉 = σ |ψσ〉 , (1.3.1.3)

Ŝ± |ψσ〉 =
√
S(S + 1)− σ(σ ± 1)

∣∣ψσ±1
〉

with Ŝ± ≡ Ŝx ± iŜy, (1.3.1.4)

〈ψσ|ψσ〉 = 1. (1.3.1.5)

An usual representation for the states |ψσ〉 is in column vector form; which is the representation followed in
this work.

|ψσ〉 =



0
...
1
0
...
0


, (1.3.1.6)

whose elements are all zero with exception of the element in the S−σ+ 1 row which is one. For S = 1, using
relations (1.3.1.3), (1.3.1.4) one finds the spin-1 operators in matrix form:

Ŝx =
1√
2

0 1 0
1 0 1
0 1 0

, Ŝy =
1√
2

0 −i 0
i 0 −i
0 i 0

, Ŝz =

1 0 0
0 0 0
0 0 −1

. (1.3.1.7)

The corresponding eigenstates, |ψσi 〉 with i = x, y, z, are therefore:

∣∣ψ1
z

〉
≡ |+1〉 =

1
0
0

, ∣∣ψ0
z

〉
≡ |0〉 =

0
1
0

, ∣∣ψ−1
z

〉
≡ |−1〉 =

0
0
1

.
∣∣ψ1
x

〉
=

1

2

 1√
2

1

, ∣∣ψ0
x

〉
=

1√
2

−1
0
1

, ∣∣ψ−1
x

〉
=

1

2

 1

−
√

2
1

.
∣∣ψ1
y

〉
=

1

2

 −1

−i
√

2
1

, ∣∣ψ0
y

〉
=

1√
2

1
0
1

, ∣∣ψ−1
y

〉
=

1

2

−1

i
√

2
1

.
(1.3.1.8)

The above are the spin-1 matrix and vector representations used in the rest of this work. Numerically they
are build with the Python package Numpy [40]; specifically as the object type numpy array.
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1.3.2 Hamiltonian and States construction

1.3.2.1 Many-body states and Operators

In general, a many-body state in a spin chain with n spins of dimension d is represented as follows

|ψ〉 =

d∑
i1,i2,...in

ci1i2...in |i1〉 ⊗ |i2〉 · · · ⊗ |in〉 ≡
d∑

i1,i2,...in

ci1i2...in |i1, i2 . . . in〉 , (1.3.2.1)

where ⊗ symbolizes a Kronecker product and the states |ij〉 are the possible states of each spin in the chain.

An operator is local if it is defined only on one site of the chain. For example, the local spin-z operator
defined in the site two of a chain with three spins would be written as

Ŝz2 = 1⊗ Ŝz ⊗ 1. (1.3.2.2)

A non-local operator is one that is defined on more that one site of the chain. For example, the spin-x
interaction operator between adjacent spins one and two in a chain of three spins is written as

Ŝx1 Ŝ
x
2 = Ŝx ⊗ Ŝx ⊗ 1. (1.3.2.3)

The dimension of any operator acting on a spin-1 chain of N sites will be 3N × 3N . In general the global
operators will be averaged over the number of sites in the chain, for example the Ŝz operator for a chain with
N sites will be

Ŝz =
1

N

N∑
i=1

Ŝzi . (1.3.2.4)

Numerically the many-body states and operators are build using the Python package Numpy; specifically
the built-in function kron.

1.3.2.2 Hamiltonian

The Hamiltonian studied along this thesis reads

H = −~p
N∑
i=1

(Ŝzi )2 − ~J
N−1∑
j=1

(
Ŝxj Ŝ

x
j+1 + Ŝyj Ŝ

y
j+1

)
, (1.3.2.5)

which can be equivalently written as

H = −~p
N∑
i=1

(Ŝzi )2 − ~J
N−1∑
j=1

1

2

(
Ŝ+
j Ŝ
−
j+1 + Ŝ−j Ŝ

+
j+1

)
, (1.3.2.6)

The equality follows directly from the definition of Ŝ±i ≡ Ŝxi ± iŜ
y
i .

Numerically the Hamiltonian for any number of sites N is built using the Python package Numpy; and
specifically the built-in functions kron, and add.

1.3.2.3 Eigenstates and Eigenfrequencies

The eigenstates and eigenfrequencies are obtained numerically (and analytically when possible) by diagonal-
ization of the Hamiltonian for the chain with 2 and 3 sites. The numerical diagonalization is calculated using
the Python package Numpy, specifically the built-in function eigh of the sub-package Linear Algebra.
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1.3.2.4 Parity operator

The parity operator Π is usually defined as the space reflection operator x→ −x [41]. In this work the term
parity operator refers to the spatial reflection of the chain when the origin of coordinates is set at half chain,
which coincides with a bond or a particle for even and odd N respectively. For example, for N = 2 the parity
operator over all the possible configurations in the Hilbert Space is defined as follows

Π |+1,+1〉 = |+1,+1〉 , Π |+1, 0〉 = |0,+1〉 , Π |+1,−1〉 = |−1,+1〉 ,
Π |0,+1〉 = |+1, 0〉 , Π |0, 0〉 = |0, 0〉 , Π |0,−1〉 = |−1, 0〉 ,

Π |−1,+1〉 = |+1,−1〉 , Π |−1, 0〉 = |0,−1〉 , Π |−1,−1〉 = |−1,−1〉 .
(1.3.2.7)

Therefore, the matrix form of the parity operator for N = 2 spin-1 particles in the z-basis simply reads

1 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 1 0 0
0 1 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 1 0
0 0 1 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 1


. (1.3.2.8)

This is clearly a SWAP gate between the sites 1 and 2 of the chain. In general, by writing the SWAP gate
between sites i and j of the chain as Πi

j , the parity operator reads

Π =


(N−2)/2∑
i=0

Πi+1
N−i for N even,

(N−3)/2∑
i=0

Πi+1
N−i for N odd.

(1.3.2.9)

The parity operator Π is such that the square of it is the identity Π2 = 1. Therefore, its unique eigenvalues
are ±1.

The parity operator, for any general N , is build with an user defined function in Python, using the packages
Numpy and itertools [42].

1.3.3 System evolution

1.3.3.1 Unitary Evolution

The dynamics of the system is given by the Schrödinger equation

i~
∂ |ψ(t)〉
∂t

= H |ψ(t)〉 , (1.3.3.1)

which will be solved numerically and analytically for the two particle case. For the numerical solutions the
evolution operator will be used

U(t) = exp(−iHt/~) = exp(−iHtp), (1.3.3.2)

where the second equality holds as ~ = 1 throughout this work, and p can be factored out of the Hamiltonian
(1.3.2.5)

H = p

(
−

N∑
i=1

(Ŝzi )2 − J

p

N−1∑
i=1

Ŝxi Ŝ
x
i+1 + Ŝyi Ŝ

y
i+1

)
. (1.3.3.3)
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We are also setting p = 1, and therefore the time t will be in units of p−1.

The state of the system at time t for a given initial state will be

|ψ(t)〉 = U(t) |ψ(0)〉 . (1.3.3.4)

The matrix exponential of the Hamiltonian will be numerically calculated using the Python package Scipy;
specifically the built-in function expm.

Another option is to build the evolution operator for a small ∆t and apply it consecutively to the initial
state. The first steps of this iteration are here illustrated

|ψ(∆t)〉 = U(∆t) |ψ(0)〉 → |ψ(2∆t)〉 = U(∆t) |ψ(∆t)〉 → |ψ(3∆t)〉 = U(∆t)3 |ψ(0)〉 , (1.3.3.5)

and in general

|ψ(n∆t)〉 = U(∆t)n |ψ(0)〉 , (1.3.3.6)

In this way the exponential of a matrix has to be calculated only once, and not at each value of t. Therefore,
the algorithm for calculating the evolution is more efficient.

It was checked that the error given by this second method with ∆t = 10−4 was for all purposes negligible. See
figure 1.1 for a comparison between the states given by the two methods, for lattice number of sites N = 3
with the initial state |ψ0〉 ≡ |0, 0, 0〉 and a ratio of J/p = 10.

Figure 1.1: Comparison between |ψ(t)U 〉 calculated via the exact unitary operator at each value of t versus |ψ(t)∆〉
calculated with successive applications of the unitary operator for a small ∆t = 10−4. The time axis is given in units
of p−1. The difference grows linearly with time and for all physical purposes is negligible within the simulating time.

1.3.3.2 Averages of relevant quantities

In this work, several quantities of interest will be averaged over a time interval T . Let C(t) be any observable
or function of interest calculated from the wavefunction |ψ(t)〉 at any specific t; the time average C(t), is
defined as

C(t) =
1

T

∫ T

0

C(t)dt. (1.3.3.7)

Numerically, this is calculated with a time step ∆t = 10−3 between points of C(t). C(t) is calculated and
saved for t = 0.000, 0.001, 0.002 . . . and so on. The integral is calculated using the built in function of the
Scipy [43] package integrate.simps, which uses the Simpson rule to evaluate it.
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1.3.3.3 Expectation value of observables

The expectation value of any observable Ô in the state |ψ(t)〉, is given by

〈Ô〉 = 〈ψ(t)|Ô|ψ(t)〉 . (1.3.3.8)

Alternatively by using the density matrix ρ(t) ≡ ρ(|ψ(t)〉) = |ψ〉〈ψ| the expectation value reads

〈Ô〉 = tr
(
Ôρ
)
. (1.3.3.9)

In this work expectation values are numerically calculated using equation (1.3.3.8). This is preferred because
we are studying a closed system and storing the density matrices ρ(t) uses exponentially more memory than
storing the states |ψ(t)〉 in vector form.

The matrix multiplications and inner products are performed using the Python package Numpy; specifically
the built-in functions matmul or dot.

1.3.4 Concepts of Classical Information Theory

1.3.4.1 Shannon Entropy

Information theory was initiated by Shannon’s seminal paper A Mathematical Theory of Communication [44].
One of the key questions posed in it was: in a given discrete information source, at what rate information is
produced in it? ; which lead him to the correlated question, can we find a measure of how uncertain we are
of the outcome of an specific event?.

Before laying out the answer given by Shannon to the second question, some simple definitions are suited.
An event, Ω, can be understood as a physical process that may have discrete (like a coin toss) or continuous
(like the momentum of a particle) outcomes and has a probability distribution associated with it. A random
variable X is a mapping from an event Ω to a probability distribution associated with its possible outcomes;
therefore, from the point of view of classical information theory the specific properties of the physical system
are non-relevant, being the random variable associated with it what it is studied. Suppose the possible
outcomes of an event Ω are continuous. In that case, the random variable X associated with it will also be
continuous and will map the outcomes to a continuous probability distribution (this would be the typical
|ψ|2 of the wavefunction describing the probability density of a particle); if the possible outcomes of an event
Ω are discrete, then the random variable X associated to it will also be discrete, and maps the outcomes to a
discrete set of probabilities {p(x1), p(x2), . . . p(xd)} where d is the total number of possible outcomes (for the
spin-1 value of a particle in a specific direction d would be equal to three). For a more complete and formal
definition of a random variable see chapter one of Ref. [45]. In this work and in the following discussion, we
only considered discrete sample space of events.

In its work, Shannon proceeded with an axiomatic approach, stating the properties that a function that
measures the amount of uncertainty of a given event should have. The interested reader is compelled to see
the original publication [44] for the details of this derivation, which lead him to define what is known as the
Shannon Entropy.

For a random variable X(p(x1), p(x2), . . . p(xd)) its Shannon entropy, H(X), is defined as:

H(X) = H(p(x1), p(x2), . . . p(xd)) = −
d∑
i=1

pi log2 pi, (1.3.4.1)

with 0 log2 0 ≡ 0. In general, for a random variable X with d possible outcomes the maximum entropy is
log2 d.

Therefore, the Shannon entropy it is understood as the uncertainty that an observer has on the outcome of
an event or about the state of a system before it is measured. Or reciprocally, it can be understood as the
amount of information gained when a measurement is performed in the system or the outcome of the event
is known [24].
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For more details about the meaning and motivation of the Shannon Entropy, the interested reader is recom-
mended to see [24, 44, 46].

1.3.4.2 Joint Entropy and Conditional Entropy

In classical information theory the joint entropy, H(X,Y ), of two random variables X and Y is defined as

H(X,Y ) = −
∑

x∈X,y∈Y
p(x, y) log2 p(x, y), (1.3.4.2)

where p(x, y) is the probability of both events x and y to occur. The join entropy it is interpreted as the
uncertainty of the joint probability distribution of X and Y before it’s measured.

The conditional entropy, H(Y |X), for two random variables X and Y is defined as

H(Y |X) = −
∑

x∈X,y∈Y
p(x, y) log2 p(y|x), (1.3.4.3)

where p(y|x) means the probability of event y given that event x occurred. It is worthwhile giving some
concrete examples to illustrate its meaning.

In the toss of two coins which are represented by random variables X(p(h1), p(t1)) and Y (p(h2), p(t2)), where
p(h1) and p(t1) respectively are the probability of the first coin to fall on heads or tails, and p(h2) and p(t2)
respectively are the probability of the second coin to fall on heads or tails. If the toss is assumed to be fair,
that is the probability of heads and tails is the same for both coins, the joint entropy is given by

H(X,Y ) = −p(h1, h2) log2 p(h1, h2)− p(h1, t2) log2 p(h1, t2)− p(t1, h2) log2 p(t1, h2)− p(t1, t2) log2 p(t1, t2)

= −4×
(

1

4
log

1

4

)
= log2 4 = 2.

(1.3.4.4)

And the conditional entropy H(Y |X) is given as

H(Y |X) = −p(h1, h2) log2 p(h2|h1)− p(h1, t2) log2 p(t2|h1)− p(t1, h2) log2 p(h2|t1)− p(t1, t2) log2 p(t2|t1)

= −4×
(

1

4
log2

1

2

)
= log2 2 = 1;

(1.3.4.5)

which is the entropy of H(Y ), and therefore the random variables X and Y are completely uncorrelated,
which is equivalent to say that no information about the state of the second coin is gained when we know
the state of the first one.

On the other hand, take for example the electric circuit formed by a switch which can have values open or
closed, connected to a battery and a led light which can be either on or off, and will always be on if the
switch is closed (or off if the switch is open).

switch lamp

battery

The switch and the light are represented by random variables X(p(so), p(sc)) and Y (p(l1), p(l0)), where p(so)
and p(sc) respectively are the probability of the switch being open and closed, and p(l0) and p(l1) respectively
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are the probability of the light being off or on. Assuming an idealized situation where all the circuit elements
work perfectly, and p(so) = p(sc) = 1/2; the joint entropy will be given by

H(X,Y ) = −p(so, l0) log2 p(so, l0)− p(so, l1) log2 p(so, l1)− p(sc, l0) log2 p(sc, l0)− p(sc, l1) log2 p(sc, l1)

= −1

2
log

1

2
− 0 log 0− 0 log 0− 1

2
log

1

2
= log 2.

(1.3.4.6)

The conditional entropy H(Y |X) will be

H(Y |X) = −p(so, l0) log2 p(l0|so)− p(so, l1) log2 p(l1|so)− p(sc, l0) log2 p(l0|sc)− p(sc, l1) log2 p(l1|sc)

= −1

2
log2 1− 0 log2 0− 0 log2 0− 1

2
log2 1 = 0;

(1.3.4.7)

therefore, the random variables X and Y are said to be completely correlated. This means that there is
cero uncertainty about the outcome of Y when the outcome of X is known, or equivalently, there is zero
information gained when the outcome of Y is known if the outcome of X was previously known.

An important theorem (related to mutual information) is the chain rule for the Shannon entropy, joint
entropy and conditional entropy of two random variables X and Y ; which states that

H(X,Y ) = H(X) +H(Y |X) = H(Y ) +H(X|Y ). (1.3.4.8)

This implies that

H(Y |X)−H(X|Y ) = H(Y )−H(X); (1.3.4.9)

thus conditional entropy is not reciprocal H(Y |X) 6= H(X|Y ), unless H(X) = H(Y ).

For proofs, interesting theorems and more results the reader is referred to [46].

1.3.4.3 Mutual Information

The mutual information, I(x, y), between two random variables X and Y is defined as

I(X;Y ) =
∑
x,y

p(x, y) log2

p(x, y)

p(x)p(y)
, (1.3.4.10)

with 0 log2(0/0) ≡ 0 [46].

It can be rewritten in the following form

I(X;Y ) = H(X)−H(X|Y ) = H(Y )−H(Y |X); (1.3.4.11)

and is therefore understood as the amount of uncertainty loss in the random variable X when Y is known
or vice versa.

Using the chain rule mutual information can equivalently be written as

I(X;Y ) = H(X) +H(Y )−H(X,Y ), (1.3.4.12)

and is therefore also understood as the amount of information that the two random variables X and Y share.

These equalities can be summarized in the following Venn diagram:
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H(X) H(Y )

H(X|Y ) H(Y |X)I(X;Y )

Figure 1.2: Venn diagram summarizing the classical information theory relations between the Shannon entropy, joint
entropy, conditional entropy and mutual information of two random variables X and Y .

Thinking of mutual information, joint entropies and conditional entropies relations with the above diagram
is always valid when treating classical random variables, but this will not be the case in quantum mechanics.
This will be further discussed below in Concepts of Quantum Information Theory.

For proofs, interesting theorems and more results the reader is recommended to see [46].

1.3.5 Concepts of Quantum Information Theory

The Classical Information Theory concepts defined above have their corresponding analogous quantities in
Quantum Information Theory, which are in principle obtained by replacing the Shannon Entropy with the
von Neumann Entropy but with important subtleties added.

1.3.5.1 Von Neumann Entropy

The Von Neumann entropy of a density matrix ρ, is defined as

S(ρ) = − tr(ρ log ρ) = −
∑
i

λi log λi, (1.3.5.1)

where the λi are the eigenvalues of ρ. Historically, Von Neumann proposed its entropy definition as a
generalization to quantum mechanics of the Gibbs Entropy for a classical macroscopic state [47].

The Von Neumann entropy can also be seen as the quantum information analog of the Shannon Entropy [24,
44, 46]. Notice that the eigenstates of the density matrix in the Von Neumann entropy are analogous to the
probabilities of the random variable X in the Shannon entropy. Therefore, the Von Neumann entropy can
be seen as a measure of how uncertain we are of the state of the system before it’s measured.

Further, for a pure bipartite state of two interacting quantum systems, the Von Neumann entropy is the
unique measurement of entanglement between them [25, 48].

The reader is compelled to notice how surprising is the connection between statistical physics, information
theory and entanglement theory in very similar entropy functions. From one end, in statistical physics
Von Neumann entropy emerges as a quantum generalization of the Gibbs entropy that characterizes the
uncertainty of a macroscopic state and is maximized in equilibrium; from the other end, in information
theory emerges as the uncertainty of the information generated in a discrete information channel [44]; and
is the unique measurement of entanglement in pure bipartite states when entanglement is understood as a
quantum resource that can not be created with LOCC (Local Operations and Classical Communication)
operations [25]. That all these three functions are practically the same is remarkable.

The numerical calculation of the von neumann entropy is performed with the Python package Numpy; in
specific with the built-in functions trace, eigh,log, and add.
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1.3.5.2 Joint Entropy

The joint entropy of two subsystems A and B described by the density matrix ρAB , is defined as [24]

S(A,B) = S(ρAB) = − tr(ρAB log ρAB) = −
∑
i

λi log λi, (1.3.5.2)

where the λi are the eigenvalues of ρAB . Notice that for a pure bipartite state |ψAB〉 the joint entropy is

S(|ψAB〉) = − tr(ρAB log ρAB) = 0 with ρAB ≡ |ψAB〉〈ψAB | , (1.3.5.3)

which quantifies the fact that one knows exactly the global state of the system and there is zero uncertainty
about it.

A fundamental difference with its classical information analog is that it is no longer true that local uncer-
tainties are less or equal to global uncertainties. In classical information theory is stated that

H(X) ≤ H(Y ) ≤ H(X,Y ) ≤ H(X) +H(Y ). (1.3.5.4)

This means that the uncertainty on the random variables X and Y is equal or less than the global uncertainty
of the joint system (X,Y ), which is never greater than the sum of the entropies of X and Y independently.
Therefore, if an observer has zero uncertainty about the global state of a classical system, then it will have
zero uncertainty about the local state of its constituents. In quantum mechanics, this is not the case, take
for example an EPR state

|ψ〉 =
|00〉+ |11〉√

2
,

which is formed by two qubits, lets’ call them the left and right qubits. Then, the global uncertainty about
the state of the system formed by the two qubits is its joint entropy which is zero. The local entropies are
defined for the reduced density matrix of each subsystem as

S(ρL) = − trL(ρL log ρL) = −
∑
i

λLi log λLi ; (1.3.5.5)

where the λLi are the eigenvalues of the reduced density matrix ρL, which is defined as ρL ≡ trR(ρ), and
indices L and R stand for left and right. The local entropies of our EPR state are

S(ρL) = S(ρR) = −1

2
log

1

2
− 1

2
log

1

2
= log 2; (1.3.5.6)

and therefore S(ρL) > S(ρ). This means that despite that an observer has zero uncertainty about the global
state of the system, it has a non-zero uncertainty about the local state of its constituents.

For a pure bipartite state of two subsystems A and B, described by the density matrix ρAB it is always true
that

S(ρAB) ≤ S(ρA) = S(ρB); (1.3.5.7)

where ρA and ρB are the reduced density matrices for subsystems A and B. The inequality and the equality
follow directly from the Schmidt’s decomposition of a pure bipartite state (see Entropies and Correlations
below).

The joint entropy will be important for the definition of mutual information, and therefore for the interpre-
tation of bipartite entropies and the definition of quantum discord.
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1.3.5.3 Conditional Entropy

One of the main differences between quantum and classical information theory resides in the definition of the
conditional entropy S(A|B) for two subsystems A and B, which is defined in [24] as

S(A|B) ≡ S(A,B)− S(B), (1.3.5.8)

a mathematical definition that allows the chain rule for classical information to still hold

S(A,B) = S(B) + S(A|B). (1.3.5.9)

However, this is just a consequence of the definition and does not seem to carry any relevant physical
information. Notice that defined in this way the conditional entropy may even take negative values, and
if it is hoped to be interpreted as the uncertainty remaining on the state of subsytem A after the state of
subsytem B is known it does not seem to be an appropriate measure.

When trying to define the conditional entropy as a function measuring the uncertainty on the state of
subsystem A when the state of the subsystem B is known, we should notice that it is not a well defined
quantity until a specific set of measurement operators on subsystem B is chosen [49]. For this reason, one
writes the conditional entropy subject to an specific selection of measurement operators on subsytem B {ΠB}.

The state of the system AB described by the density matrix ρAB , after an specific measurement is done, and
the outcome corresponding to Πj

B has been detected is

ρAB|(Πj
B) =

Πj
BρABΠj

B

tr
(

Πj
BρABΠj

B

) . (1.3.5.10)

Therefore, the conditional entropy for an specific set {ΠB} was defined by the authors in [49] as

S(A|B({ΠB})) =
∑
j

pjS(A|Πj
B); (1.3.5.11)

where pj is the probability of obtaining the outcome associated with the projector Πj
B . Notice that this

definition does carry physical significance, and can be interpreted as the average uncertainty that an observer
has on the state of subsytem A when a specific projective measurement is performed on the system B and
its state is completely known.

A consequence of the difference between the classical and quantum definitions of the conditional entropy, or
more precisely between the local accessible information, is that the chain rule equality in the most general
case is broken. In fact it turns out to be always true that

S(A,B) ≤ S(B) + S(A|B{ΠB}). (1.3.5.12)

Let us call this inequality the chain rule inequality. Proofs of it can be found at [49] or at [50].

For pure bipartite states the conditional entropy S(A|B{ΠB}) = S(B|A{ΠA}) = 0. This follows from the
fact that after a projective measurement on a pure state is done and an specific outcome is detected, the
resulting state is also a pure state, and therefore its entropy is zero.

1.3.5.4 Mutual Information and locally accessible mutual information

The classical mutual information between two random variables X and Y , I(X;Y ), is defined as

I(X;Y ) = H(X)−H(X|Y ) = H(Y )−H(Y |X); (1.3.5.13)

which means the amount of information that is gained about X when Y is known or viceversa. Using Bayes
theorem it is mathematically equivalent to

I(X;Y ) = H(X) +H(Y )−H(X,Y ); (1.3.5.14)
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and is therefore also equal to the difference between the sum of the local uncertainties and the total uncertainty
on the two variables system.

Following the classical definition of mutual information, the locally accessible mutual information between
two quantum systems A and B, J(A,B), can be defined as the uncertainty left in subsystem A when the
state of sub-system B is known [51]

J(A,B{ΠB}) = S(A)− S(A|B{ΠB}); (1.3.5.15)

which in general will not be symmetric under the exchange of A with B, as it involves an specific set of
measurement projectors and in general the conditional entropy will be different for different sets.

The other possible definition for quantum mutual information between two subsytems A and B whose state
is describe by the density matrix ρAB , I(A : B), is the difference between the sum of local entropies with the
global entropy pre-measurement

I(A : B) = S(A) + S(B)− S(A,B); (1.3.5.16)

where S(A) is the von neumann entropy of the reduced density matrix ρA. I(A : B) will be simply called
mutual information.

From the chain rule inequality it follows that

I(A : B)− J(A,B{ΠB}) = S(B) + S(A|B{ΠB})− S(A,B) ≥ 0. (1.3.5.17)

This inequality will naturally lead to the definition of quantum discord as a measurement of quantum cor-
relations as it quantifies one of the fundamental differences between classical and quantum correlations. In
the former, all the shared information between two variables can be locally accessed, whereas, in the second
this is in general not true. Further comments are made in Quantum Discord below.

1.3.6 Entropies and Correlations

1.3.6.1 Schmidt Decomposition and Purifications

A quantum system whose state |ψ〉 is known exactly is said to be in a pure state [24]; and it’s density matrix
is simply

ρ = |ψ〉〈ψ| . (1.3.6.1)

Otherwise, the system is said to be in a mixed state. A mixed state density matrix is a linear combination of
the different pure states in the ensemble; and is written as

ρ =
∑
i

pi |ψi〉〈ψi| . (1.3.6.2)

The Schmidt’s decomposition of a pure bipartite state of subsystems A and B of dimensions n and m
respectively, |ψAB〉, is the following:

|ψAB〉 =

d∑
i

√
λi |iA〉 ⊗ |iB〉 , (1.3.6.3)

where the vectors in the sets {|1A〉 , |2A〉 . . . |dA〉} and {|1B〉 , |2B〉 . . . |dB〉} form an orthonormal basis of
dimension d; and the λi are positive real coefficients. The proof of why such a decomposition exists is based
on the singular value decomposition of a matrix and is given with details in [24].

The λi are called the Schmidt’s coefficients; d is called the Schmidt’s number ; and the orthonormal set of
vectors {|iA〉}, {|iB〉} are called the Schmidt’s vectors.
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The Schmidt’s coefficients for a pure bipartite state are unique. This is a consecuence of the fact that a
pure bipartite density matrix has, by definition, an unique state which generates it; which implies that the
reduced density matrix of any of the subsystems ρA or ρB is also unique. Therefore, as for a given Schmidt
decomposition of a state the reduced density matrix of system A, ρA, is given by

ρA = trB(
∑
i,j

√
λiλj |iA〉〈jA| ⊗ |iB〉〈jB |) =

m∑
l=1

√
λiλj |iA〉〈jA| ⊗ 〈lB |iB〉 〈jB |lB〉 =

d∑
l=1

λl |lA〉〈lA| , (1.3.6.4)

the Schmidt’s coefficients must also be unique. Notice that this is not the case for the Schmidt’s vectors
if one of the Schmidt’s coefficients is degenerate, that is the same number appears more than once in the
decomposition. In order to clarify the above statement take an EPR or Bell state

(|00〉+ |11〉)/
√

2,

and notice that it is already in it’s Schmidt’s decomposition. Also take the following state

(|++〉+ |−−〉)/
√

2, with |±〉 ≡ |(0〉 ± |1〉)/
√

2.

It is direct to check that both states above are representations of the same state. The Schmidt’s coefficients
remain the same, but the Schmidt’s vectors change. In general, for any degenerate Schmidt value, λi, any
set of orthonormal vectors build as linear combinations of the Schmidt’s vectors associated to the degenerate
value, λi, will also be a set of valid Schmidt’s vectors associated to it. When there are no degenerate Schmidt’s
values, the set of Schmidt’s vectors is also unique.

The uniqueness of the Schmidt’s values will be important for the Bipartite Entropies of pure states.

1.3.6.2 Bipartite Entropies

In this work, bipartite entropies are studied in the emerging dynamics of both the dimer and trimer. Their
dynamical evolution and averages over relevant times are determined.

Bipartite entropies are defined for any bipartite quantum system AB, described by a density matrix ρAB ,
as the Von Neumann entropies of the reduced density matrices ρA ≡ trB(ρAB) and ρB ≡ trA(ρAB). The
bipartite entropy of A is S(A) ≡ S(ρA).

For pure bipartite states the bipartite entropy is unique and is the same for both subsystems A and B. This
follows from writing the state in its Schmidt’s decomposition

|ψ〉 =
∑
i

√
λi |iA〉 ⊗ |iB〉 → ρA =

∑
i

λi |iA〉〈iA| , ρB =
∑
i

λi |iB〉〈iB | =⇒ S(A) = S(B). (1.3.6.5)

For a general pure state of a many-body system, |ψ〉, bipartite entropies are defined for specific bipartitions
of it. It is always possible to write any pure many-body system state as a pure bipartite state with an
specific bipartition. To show this, first notice that any product state of a quantum many-body system with
n sub-systems, each of them of dimension mi which can be written as∣∣e{jk}〉 = |j1〉 ⊗ |j2〉 ⊗ · · · ⊗ |jm〉 ,where {jk} represents the set {j1, j2, . . . jn},

can be mathematically decomposed in two sub-systems A and B.

For example, let n = 3 and m1 = m2 = m3 = 3; then all product states can be written as∣∣e{jk}〉 = |j1〉 ⊗ |j2〉 ⊗ |j3〉 , with ji = 1, 2, 3. (1.3.6.6)

The set of all different possible bipartitions, A−B, is {12− 3, 13− 2, 1− 23}. The bipartition 12− 3 means
that one is taking A as the system formed by the sub-systems 1 and 2, and B as the system formed by
sub-system 3. See figure 1.3.
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A

B

A B

Figure 1.3: Possible bipartitions of a three particle system. From left to right 1− 23, 13− 2, 12− 3.

A basis set for A is the one formed by the states∣∣A{jk}〉 = |j1〉 ⊗ |j2〉 , with j1, j2 = 1, 2, 3; (1.3.6.7)

which can be reshaped as

|Al〉 = |j1, j2〉l = |j1〉 ⊗ |j2〉 with 1 ≤ l ≤ 9, l ∈ N, (1.3.6.8)

with a simple mapping (j1, j2)→ l ((1, 1)→ 1; (1, 2)→ 2 and so on). A basis set for B is defined in the same
way

|Bk〉 = |j3〉 , with j3 = 1, 2, 3; (1.3.6.9)

without the need of reshaping and mapping as B is formed by only one subsystem. Then, in this new basis
the product state

∣∣e{jk}〉 can be rewritten as∣∣e{jk}〉 = |Al〉 ⊗ |Bk〉 , (1.3.6.10)

and therefore it is mathematically equivalent to a pure bipartite state of systems A and B, with dimensions
3× 3 = 9 and 3 respectively.

Now take a general quantum system of N sub-systems, where each sub-system i has dimension mi and basis
{|i1〉 , |i2〉 , . . . , |imi

〉}. A complete set of basis states for the system is formed by the set of all
∣∣e{ji}〉 product

states as defined above. As any state can be written as a linear combination of product states

|ψ〉 =
∑
{ji}

c{ji}
∣∣e{ji}〉 , (1.3.6.11)

it follows that it can be rewritten as a pure bipartite state

|ψ〉 =
∑
{ji}

c{ji} |AjA〉 ⊗ |BjB 〉 ; (1.3.6.12)

and therefore it can be written in its Schmidt decomposition by using its singular value decomposition. In this
way the bipartite entropy is uniquely defined for any pure bipartite state independent from the dimensions
of its sub-systems.

For pure bipartite states the bipartite entropy is half the mutual information

I(A : B) = S(A) + S(B)− S(A,B) = 2S(A) = 2S(B); (1.3.6.13)

as S(A,B) = 0 because it is a pure state. It is also exactly equal to the locally accessible mutual information

J(A,B{ΠB}) = J(B,A{ΠA}) = S(A)− S(B|A{ΠA}) = S(B)− S(A|B{ΠB}) = S(A) = S(B). (1.3.6.14)

as S(B|A{ΠA}) = S(A|B{ΠB}) = 0 for pure states as explained above at the end of conditional entropy.

In the literature bipartite entropies are sometimes referred as entanglement entropies [32, 52, 53]. It has been
found that they signal quantum phase transitions in spin-chains, both static and dynamical [15, 26, 32, 54].

Numerically, bipartite entropies were calculated with an user defined function in Python using the library
Numpy; specifically with the functions kron, matmul, log, eigh.
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1.3.6.3 Quantum Discord

During the development of this work the Quantum Discord evolution and averages over relevant times were
studied in the trimer emerging dynamics, but the results and analysis are left to be presented elsewhere.

In classical information theory two identical measurements of mutual information are I(A,B) and J(A,B)

I(A;B) = H(A) +H(B)−H(A,B), (1.3.6.15)

J(A,B) = H(A)−H(A|B) = H(B)−H(B|A), (1.3.6.16)

which can be shown to be equal using the classical information chain rule. When these measurements are
generalized to quantum systems one gets the mutual information I(A : B)

I(A : B) = S(A) + S(B)− S(A,B), (1.3.6.17)

and the locally accessible mutual information J(A,B{ΠB})

J(A,B{ΠB}) = S(A)− S(A|B{ΠB}); (1.3.6.18)

as explained above in concepts of classical information theory and concepts of quantum information theory.

Quantum discord was originally defined in the work of Ollivier and Zurek [49] as the difference between the
mutual information I(A,B) and the locally accessible mutual information J(A,B{ΠB})

δ(A,B{ΠB}) = I(A : B)− J(A,B{ΠB})
= S(B) + S(A|B{ΠB})− S(A,B).

(1.3.6.19)

Notice therefore that quantum discord is a measurement of how broken is the mutual information chain rule
for quantum systems for some set {ΠB} of projective local measurements.

At a similar time Henderson and Vedral [55] proposed a measurement for the classical correlations in a
bipartite quantum systemQ(A,B). The proposed measurement was the maximal value of the locally accessible
mutual information:

Q(A,B) = sup
{ΠB}

J(A,B{ΠB}) = S(A)− min
{ΠB}

S(A|B{ΠB}); (1.3.6.20)

where it is not in general true that sup{ΠB} J(A,B{ΠB}) = sup{ΠA} J(B,A{ΠA}) [56]. This leads to the
more physically relevant definition of quantum discord as

δ(A,B) = I(A : B)−Q(A,B) = S(B) + min
{ΠB}

S(A|B{ΠB})− S(A,B); (1.3.6.21)

which is interpreted as the amount of quantum correlations between systems A and B. Discord is in general
not symmetrical under the change A→ B =⇒ δ(A,B) 6= δ(B,A).

Note that for a pure bipartite state the quantum discord is exactly equal to the bipartite entropy

δ(A,B) = S(B)− S(A,B) + minS(A|B{ΠB}) = S(B) = S(A); (1.3.6.22)

due to the fact that for a pure bipartite state S(A,B) = 0, S(A|B{ΠB}) = S(B|A{ΠA}) = 0 and S(A) =
S(B) as explained above in Bipartite Entropies and Conditonal Entropy.

Quantum discord has been found to identify critical points in quantum phase transitions [29, 37, 57, 58]. It has
further interests in several areas, including quantum algorithms, quantum information, thermodynamics [51]
and many-body physics. In general quantum discord is minimize with Positive Operator Value Measurements
(POVM) instead of projective measurements as presented here, but it has been numerically found that the
difference is minimal [59]. For a review see the reference [56].
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1.4 Resources

The resources needed for the development of this work were a computer, books and access to the relevant lit-
erature. FONDECYT 1190727 provided both the books and the computer, iMac model 2014. The University
has access to the specialized journals in digital form.
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Chapter 2

Results

In this chapter we present the results of this work.

We divided their presentation in the three following sections Hamiltonian General Properties, Dimer Quantum
Dynamics, Trimer Quantum Dynamics.
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2.1 Hamiltonian General Properties

In this section we give the general properties of the model Hamiltonian

H = −~p
N∑
i=1

(Ŝzi )2 − ~J
N−1∑
i=1

(Ŝxi Ŝ
x
i+1 + Ŝyi Ŝ

y
i+1).

We highlight the competition between the local anisotropy term, and the interaction term given by the
XY-spin interaction. Thus, the emerging dynamics will depend on the ratio J/p.

2.1.1 Conserved spin quantities

The conserved quantities of the system are the global Ŝz and the total square spin of the chain Ŝ2 =
(Ŝx)2 + (Ŝy)2 + (Ŝz)2, [

Ŝz, H
]

= 0,
[
Ŝ2, H

]
= 0. (2.1.1.1)

The rest of spin observables are in general not conserved:[
Ŝα, H

]
6= 0 with α = x, y;[

(Ŝα)2, H
]
6= 0 with α = x, y, z.

(2.1.1.2)

2.1.2 Unitary symmetry

The system Hamiltonian has U(1) symmetry, which corresponds to the invariance of the system under global
unitary rotations over the z-axis. This is proved by showing the invariance of the Hamiltonian under the
following unitary transformation [39]

(Uzθ )†HUzθ = H, with Uzθ ≡ exp
(
−iθŜz

)
=

N∏
i=1

exp
(
−iθŜzi

)
. (2.1.2.1)

It can be shown that the same invariance does not hold for Uαθ with α = x, y.

2.1.3 Parity

As the Parity operator is unitary it follows that the system has parity symmetry as the Hamiltonian is
invariant under the transformation

ΠHΠ = H. (2.1.3.1)

This implies that if the initial state of the system is an eigenstate of the parity operator with eigenvalue +1
or −1, the system will only explore the positive or negative subspace respectively.

The proofs of all conserved quantities are presented in the appendix Proofs.
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2.2 Dimer Quantum Dynamics

In this section we study the dynamical properties of the XY-spin-1 model for N = 2 particles. Being the
simplest possible case where a non-trivial dynamics emerges, physical intuition is gained by its study. In
particular, we discuss the effective Hamiltonian and accesible states, analytical solution, eigenstates and
eigenfrequencies, evolution of the accessible states probabilities, Loschmidt echo, spin-z correlations and the
von Neumann entropy evolution and its time average

2.2.1 Accessible Hilbert Space and Effective Hamiltonian

The accessible states of the system are the positive eigenstates of the Parity operator with an expectation
value of the global spin-z operator 〈Ŝz〉 = 0:

|ψ0〉 ≡ |00〉 ≡
(

1
0

)
,

|ψ1〉 ≡ (|+1,−1〉+ |−1,+1〉)/
√

2 ≡
(

0
1

)
.

(2.2.1.1)

Where |ψ0〉 corresponds to the initial state. In the basis {|ψ0〉 , |ψ1〉} the effective Hamiltonian is

Heff =

(
0 −

√
2J

−
√

2J −2p

)
. (2.2.1.2)

The emerging dynamics between the two effective states are equivalent to those of a two-level system where
the initial state is a linear combination of the ground and excited states. The state of the system at time t
reads

|ψ(t)〉 = e−iE0tc00 |E0〉+ e−iE1tc10 |E1〉 , with cij ≡ 〈Ei|ψj〉 . (2.2.1.3)

Here, E0 = p(−γ − 1) and E1 = p(γ − 1), with γ ≡
√

2(J/p)2 + 1, are the eigenfrequencies of the effective
Hamiltonian and |E0〉 , |E1〉 their corresponding eigenstates. Therefore, the evolution of the system is periodic
|ψ(t+ T )〉 = |ψ(t)〉, with period T = π/pγ.

2.2.2 States and Observables Evolution

In our search for signatures of dynamical quantum phase transitions (DQPTs), we study the Loschmidt
echo L(t) ≡ | 〈ψ(t)|ψ0〉 |2 since DQPTs are characterized by non-analicities in the the rate function λ(t) ≡
− ln(L(t))/2 [34, 60]. We also study the longitudinal spin alignment A ≡ 2 − 3〈Ŝz〉. This quantity was the
main observable recorded in the experimental evolution studied in the Ref. [33]. As we show below and
in the following subsections, A can be used to measure both the Loschmidt echo and the two-point spin-z
correlation function. It can also be used to determine the time t at which a maximally entangled state is
reach.

Using the effective Hamiltonian 2.2.1.2 the evolution was solved analytically. In the basis of the accessible
states, the state of the system as a function of t is given by

|ψ(t)〉 =

(
cos(γtp)− i sin(γtp)

γ

i
√

2
γ
J
p sin(γtp)

)
. (2.2.2.1)

The Loschmidt echo and the probability amplitude |c1(t)|2 ≡ | 〈ψ1|ψ(t)〉 |2 are given by

L(t) = 1−
(
γ2 − 1

γ2

)
sin2(γtp), |c1(t)|2 =

2J2/p2

γ2
sin2(γtp). (2.2.2.2)
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This implies that the Loschmidt echo will oscillate in time between L(t) = 1 for t = nT , and L(t) = 1/γ2 for
t = (n+ 1)T/2 with n ∈ N. For finite values of J/p, 1/γ2 is never zero. Thus, it follows that non-analiticities
never show up in the rate function λ(t).

The longitudinal spin alignment A at time t reads

A = 2− 6J2

p2γ2
sin2(γtp), (2.2.2.3)

which implies that A will oscillate periodically in time between A(t) = 2 for t = nT and A(t) = 2−6J2/p2γ2

for t = (n + 1)T/2 with n ∈ N. When |ψ(t)〉 = c0 |ψ0〉 + c1 |ψ1〉 with |c0|2 = 1/3, |c1|2 = 2/3, A is equal to
zero since the spin-z distribution in this state is entirely random. A reaches its minimum value, Amin, at half-
period, and several minimum values of Amin can be reach at different values of J/p. For instance, at J/p = 1,
Amin = 0. For J/p > 1, Amin < 0 and reaches the minimal possible value Amin = −1 in the limit J/p→∞.
As L(t) = (A+ 1)/3, the Loschmidt echo becomes zero at half-period only in the asymptotic limit J/p→∞.
Therefore, signatures of a dynamical quantum phase transition are not found in the dynamics for finite values
of J/p. In figure 2.1 we show the evolution of A as a function of time for values of J/p ≈ 0.23, 1.00, 4.57.

Figure 2.1: The longitudinal spin alignment A is plotted as a function of time. The lines solid with circular markers,
solid, and dashed correspond to J/p ≈ 0.23, 1.00, 4.57 respectively.

2.2.3 Spin-z Correlations

One of the main objectives of this work is to identify an adequate order parameter for describing dynamical
quantum phase transitions. In general, an order parameter is such that it vanishes for one dynamical phase
and takes a finite or even unbounded value in another phase in the long-time dynamics [16, 61]. With this
in mind, we study the average over a period T = π/pγ of the two-point spin-z correlation function C(t) for
each value of J/p, which exactly reflects the desired dynamical behavior of an order parameter.

Within the framework of the effective Hamiltonian 2.2.1.2, the time average of the two-point spin-z correlation
function C(t) reads

C(t) ≡
〈
Ŝz1 Ŝ

z
2

〉
−
〈
Ŝz1

〉〈
Ŝz2

〉
≡ 1

T

∫ T

0

[〈
Ŝz1 Ŝ

z
2

〉
−
〈
Ŝz1

〉〈
Ŝz2

〉]
dt = − J2

p2γ2
. (2.2.3.1)

We notice that the time average of the two-point spin-z correlation is related to the longitudinal spin alignment

according to the relation C(t) = −〈(Ŝz)2〉 = (A − 2)/3. Therefore, in the dimer case, the average of the
longitudinal spin alignment A over a period T gives the same information about the dynamics as C(t).

In figure 2.2 we plot C(t) and its derivative with respect to log(J/p). The inflection points of its first
derivative are log(J/p) = −0.44, 0.13 → J/p ≈ 0.36, 1.45. These points allow us to identify three dynamical
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regimes. A local-dominant regime where the anisotropy term dominates the dynamics and a small close to
zero time average of the two-point spin-z correlation is build. An intermediate regime where the time average
of the two-point spin-z correlation quickly decreases as J/p increases, and an interaction-dominant regime
where the two-point spin-z correlation time average converges towards −1/2. Although these points allow
us to identify three dynamical regimes, we stress that the inflection points of the first derivative of the von
Neumann entropy will allow us to identify finer and richer dynamical features, as we shall see in the next
subsection Von Neumann Entropy.

Figure 2.2: The log(J/p) is taken in base 10. The solid (blue) line represents C(t) averaged over T = π/pγ as function

of log(J/p). The dotted (green) line shows the first derivative of the time average C(t)
′

with respect to log(J/p) scaled
by 1/5 to fit the plot. The solid (black) horizontal line is set at 0 which is the value of C(t) in the limit J/p → 0.
The horizontal dashed line is set at −1/2 which is the value of C(t) in the limit J/p→∞. The vertical dashed lines

are at the inflection points of C(t)
′
, that is, log(J/p) = −0.44, 0.13.

2.2.4 Von Neumann Entropy

Analytically the von Neumann entropy associated with the reduced density matrix ρ1(t) = ρ2(t) reads

S(t) = −|c0|2 log3 |c0|2 − |c1|2 log3

|c1|2

2
, (2.2.4.1)

with |c0|2 = cos2(γt) + sin2(γt)/γ2 and |c1|2 = 2J2 sin2(γt)/γ2p2. In figure 2.3 we show the von Neumann
entropy evolution as a function of time for values of J/p ≈ (0.23, 0.85, 1.78, 4.57). The maximum entropy,
S(t) = 1, is reached for the maximally entangled qutrit state state |ψ(t)〉 = c0 |ψ0〉+ c1 |ψ1〉with |c0|2 = 1/3
and |c1|2 = 2/3. For J/p < 1 the system never reaches the maximum entropy. For J/p = 1 it reaches the
maximum entropy, and therefore a maximally entangled state, once per period. For J/p > 1 it reaches the
maximum entropy twice per period. This pattern can be clearly understood by looking at the probability
amplitude of the accessible state |ψ1〉 in eq. 2.2.2.2. During a complete period the maximum value of |c1|2
is greater than 2/3 for J/p > 1, and therefore the point |c1|2 = 2/3 is reached twice in each period. Due
to the long time window that the dimer is nearly a maximally entangled state when J/p ∼ 1, the dynamics
provides a good protocol to generate highly entangled states of spin-1 systems.

In figure 2.4 we plot the time-average over a period T = π/pγ of the von Neumann Entropy and its first
derivative with respect to log(J/p). In contrast with the first derivative of the time average of the two-
point spin-z correlation function C(t), we identify three inflection points of the first derivative of the time
average entropy S(t) which are able to capture richer and finer dynamical features. In particular, we define
four different dynamical regimes, namely, a local-dominant regime, a first intermediate regime, a second
intermediate regime, and an interaction-dominant regime. These regimes are explained in the following.
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Figure 2.3: In the left panel we show the evolution of S(t) for J/p ≈ 0.23, 0.85. The vertical solid (red) and dashed
(blue) line are set at the first period of evolution T = π/pγ for J/p ≈ 0.23, 0, 85 respectively. In the right panel we
show the evolution of S(t) for J/p ≈ 1.78, 4.57. The vertical solid (red) and dashed (blue) lines are set at the first
period of evolution T = π/pγ for J/p ≈ 1.78, 4.57 respectively.

Figure 2.4: The log(J/p) is taken in base 10. The solid (blue) lines represents the average von Neumann entropy
S(t) as a function of log(J/p). The dotted (red) line represents the first derivative of S(t) with respect to log(J/p),

S(t)
′
. The vertical long-dashed (green) lines are set at the inflection points of S(t)

′
log(J/p) = −0.63,−0.07, 0.66→

J/p ≈ 0.23, 0.85, 4.57. The vertical and horizontal dashdotted (black) lines show the maximal value of S(t) reached for
log(J/p) = 0.25→ J/p ≈ 1.78. The horizontal short-dashed (blue) line is set at the asymptotic value of S(t) ≈ 0.6671
in the limit J/p→∞.

We define the local-dominant regime for J/p < 0.23, where we identify the first inflection point at J/p ≈ 0.23.
In this regime, S(t) slowly increases from 0 in the limit J/p→ 0 to S(t) = 0.196 for J/p ≈ 0.23.

We define the first intermediate regime with J/p ∈ (0.23, 0.85), where we identify the second inflection point
at J/p ≈ 0.85. In this regime, S(t) rapidly increases from 0.196 for J/p ≈ 0.23 to 0.628 for J/p ≈ 0.85.

We define the second intermediate regime with J/p ∈ (0.85, 4.57), where we identify the third inflection point
at J/p ≈ 4.57. In this regime, S(t) slowly increases until reaching a maximum S(t)max ≈ 0.693 at J/p ≈ 1.78,
and then starts to slowly decrease.

We define the interaction-dominant regime with J/p > 4.57, where S(t) converges towards the asymptotic
value of S(t) ≈ 0.6671 in the limit of J/p → ∞. This diminution of the average entropy is explained by
the fact that the dip between the two maximum of S(t), reach at T/2, is more pronounced as J/p increases.
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Compare the dips between the two maximum within each period for J/p ≈ 1.78 and J/p ≈ 4.57 in the right
panel of figure 2.3.

The dip between the two maximum of the von Neumann entropy is explained as follows. In figure 2.5 we plot
the von Neumann entropy 2.2.4.1 of the state |ψ〉 = c0 |ψ0〉+c1 |ψ1〉 as a function of |c0|2. In the evolution, for
J/p > 1 the von Neumann entropy will reach its maximum value of 1 when |c0(t)|2 = 1/3 at a time t < T/2.
Then, it will decrease until t = T/2 when |c0(t)|2 reaches its minimal value. We indicate the minimal
values reach by |c0(t)|2 ≡ | 〈ψ0|ψ(t)〉 |2 with vertical solid, dashed and dotted lines for J/p ≈ 1.00, 1.78, 4.57
respectively. As for increasing J/p the minimum value reach by |c0(t)|2 gets smaller, so does the dip between
the two maximum and the average over a period decreases.

Figure 2.5: The solid (red) line shows the static von Neumann entropy as a function of |c0|2. The vertical solid, dashed
and dotted lines respectively correspond to the minimum values reach by |c0(t)|2 → 1/γ2 with γ =

√
2J2/p2 + 1 in

the evolution for values of J/p ≈ 1.00, 1.78, 4.57.

We remark that the values of J/p given by the inflection points of the first derivative of S(t) provide a
guideline to categorize and better understanding the different emerging dynamics of the system with respect
to the ratio of J/p. We also conclude that the average of the von Neumann entropy is a more complete order
parameter than the average of the two-point spin-z correlation function, in the sense that more information
about the different emerging dynamical regimes can be extracted from it.

We further note that if a unique time T is fix to study the average over the whole J/p spectrum, then the
long-time asymptotic behavior is not well represented for all values of J/p, and physical information about
the dynamics is lost. For example, if a fix T throghout all the J/p spectrum is used to calculate S(t), its
derivative losses its physical meaning since it would be quickly oscillating between positive and negative
values. In contrast, if the average is taken over the period T = π/pγ for each value of J/p, the derivative of
S(t) smoothly changes as we show in the figure 2.4. For the dimer the evolution is periodic, and it is simple
to determine the appropriate value of T for each value of J/p that captures the average in the asymptotic
long-time limit T → ∞. Finding the values of T that correctly represent the average in the asymptotic
long-time limit will become more challenging as the number of sites in the lattice increases, as we will discuss
in the next section.
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2.3 Trimer Quantum Dynamics

In this section we study the dynamical properties of the XY-spin-1 model for N = 3 particles. The trimer
corresponds to the smallest chain without an analytic solution for the emergent dynamics. In comparison with
the dimer, we obtained richer non-periodic emerging dynamics, and additional physical intuition is gained
with respect to the emerging times scales. We find signatures of a dynamical quantum phase transition, and
confirm that time averaged bipartite entropies are more complete order parameters than the time average
of the two-point spin-z correlation functions. Further, we study the role of the parity symmetry of the
system in the mutual information distribution. In particular, we discuss the effective Hamiltonian, accesible
states, eigenstates and eigenfrequencies, Loschmidt echo and its rate function, spin-z correlations, bipartite
entropies, and mutual informations.

2.3.1 Effective Hamiltonian

The accessible states of the system are the positive eigenstates of the Parity operator with an 〈Ŝz〉 = 0:

|ψ0〉 ≡ |000〉 ≡

1
0
0

,
|ψ1〉 ≡ (|+1,−1, 0〉+ |0,−1,+1〉+ |−1,+1, 0〉+ |0,+1,−1〉)/2 ≡

0
1
0

,
|ψ2〉 ≡ (|+1, 0,−1〉+ |−1, 0,+1〉)/

√
2 ≡

0
0
1

.
(2.3.1.1)

In this basis the effective Hamiltonian is

Heff =

 0 −2J 0

−2J −2p −
√

2J

0 −
√

2J −2p

. (2.3.1.2)

The state of the system at time t reads

|ψ(t)〉 =

2∑
i=0

e−iEitci0 |Ei〉 , with cij ≡ 〈Ei|ψj〉 , (2.3.1.3)

where the Ei and |Ei〉 are the eigenfrequencies and eigenstates of the effective Hamiltonian.

At time t the probability amplitudes pi ≡ | 〈ψi|ψ(t)〉 |2 of the accessible states read

| 〈ψi|ψ(t)〉 |2 =

∣∣∣∣∣∣
2∑
j=0

c∗jicj0e
−iEjt

∣∣∣∣∣∣
2

, (2.3.1.4)

and the expectation value of any observable Ô reads

〈
Ô
〉

=

2∑
i,j=0

c∗i0cj0 〈Ei|Ô|Ej〉 e−i∆jit, with ∆ij ≡ Ei − Ej . (2.3.1.5)

Is clear that all the emerging dynamics are, at least in principle, contained in the accessible states, eigenstates
and eigenfrequencies of the system. Therefore, for characterizing the emerging dynamics it is useful to study
the spectral properties of the frequencies (or energies) of the system [62, 63]. In our particular finite case,
the ratio between frequencies Rf ≡ min(∆21/∆10,∆10/∆21) will determine the time scales of the dynamics.

27



Commensurable values of Rf will lead to periodic dynamics, and uncommesurable values of Rf will lead to
non-periodic dynamics. We numerically find that for J/p 6= 0,∞ Rf is always uncommesurable, and the
emerging dynamics will always be non-periodic. In figure 2.6 we plot Rf , and the weights of the effective
Hamiltonian eigenstates, |cij |2, in the initial state as a function of log(J/p). We discuss their relation with
the emerging dynamics in the appendix Trimer Additional Results.

In figure 2.6 the values log(J/p) = −0.73, 0.65,−0.2,−0.11, 0.67 → J/p ≈ 0.19, 0.22, 0.63, 0.78, 4.68 corre-
spond to the inflection points of the first derivatives of the averaged bipartite entropies S12−3(t) and S13−2(t)
with respect to log(J/p). As in the dimer, these points allow us to define four different dynamical regimes, as
we further discuss below in States and Observables Evolution and Bipartite Entropies. We show these points
in figure 2.6 to highlight how the dynamical regimes that we identify for the trimer are consistent with the
behavior of both Rf and the weights |ci0|2.

Figure 2.6: The log(J/p) is taken in base 10. The left panel shows Rf as a function of log(J/p). The right panel
shows the weights of the effective Hamiltonian eigenstates in the initial state plotted as a function of log(J/p). In the
right panel the dashed horizontal line is set at 1/3. The weights |c00|2 and |c10|2 steadily increase in the intermediate
regime log(J/p) ∈ (−0, 73, .67) from 0.0144 and 0.0184 to 0.2788 and 0.3267 respectively, which are close to their
asymptotic values |c00|2 = |c10|2 = |c20|2 = 1/3 in the limit J/p → ∞. In both panels the dashdotted (yellow) and
dashed (green) vertical lines mark the inflection points of the first derivatives of S12−3(t) and S13−2(t) respectively.

2.3.2 States and Observables Evolution

In figure 2.7 we plot the short time evolution of probability amplitudes of the accessible states for values of
J/p ≈ 0.19, 0.78, 2.19, 4.68. As expected from the effective Hamiltonian (2.3.1.2) structure, initially in the
evolution p1 ≡ | 〈ψ1|ψ(t)〉 |2 increases while p2 ≡ | 〈ψ2|ψ(t)〉 |2 remains close to zero. Afterwards all three
probabilities will in general oscillate non-periodically.

For J/p < 0.19, in the local-dominant regime, the system slightly departs from the initial state to then come
back to it quasi-periodically.

In the intermediate regime, 0.19 < J/p < 4.68, the system oscillates away from the initial state until it
reaches a minimal value of the Loschmidt echo, L(t), and then starts returning to the initial state, completing
a Poincare Recurrence at a time Tr (see the left panel of figure 2.8). This is a finite-size effect of the system,
and for larger systems this observable Poincare recurrence will occur in longer times.

The value of J/p = 1.00 establishes a relevant point which allows us to differentiate a true Poincare recurrence
from a near return to the initial state at time Tm. For J/p < 1.00, Tm = Tr. For J/p > 1.00 Tm 6= Tr.
For example, in the lower right panel of 2.7, the solid (blue) line shows the short time evolution of L(t) ≡
|
〈
ψ0

∣∣ψ(t)
〉
|2. In this short times we see a quasi-periodic evolution with period Tm. This quasi-periodic

evolution is lost in longer times which we show in the right panel of figure 2.8. There, we can see that that
the system drifts away from the initial state until finite size effects dominate the dynamics and a Poincare
recurrence occurs. See the appendix Trimer Additional Results for a plot of Tr, Tm, and a discussion of their
connection with the eigenfrequencies of the system.

In the intermediate regime 0.19 < J/p < 4.68 the minimum value reached by L(t) gradually decreases from
approximately 0.87 for J/p ≈ 0.19 to be lower than 0.001 for J/p ≈ 1.66. For all the values of J/p > 1.66 the

28



rate function λ(t) ≡ − ln(L(t))/3 has clear kinks at the times where the fidelity is lowest, showing signatures
of a dynamical quantum phase transition with a critical point in J/p ≈ 1.66. For smaller values of J/p these
kinks become less pronounced. For example, for J/p = 1.00 the rate function has no kinks whatsoever. In
figure 2.9 we show the evolution of the rate function for J/p ≈ 1.00, 1.66.

Crucially, in contrast to what happened in the 1-D Transverse Field Ising Model (TFIM) studied in [38], where
only for certain discrete values of the quench parameters the system evolved towards an orthogonal state
with respect to the initial state, in our spin-1 model for all values of J/p > 1.66 the system evolves towards
an almost completely orthogonal state |ψ′(t)〉 with respect to the initial state (i.e. | 〈ψ′(t)|ψ0〉 |2 < 0.001). In
the appendix Trimer Additional Results we give a plot showing the minimal values reach by L(t). We also
discussed there how the longitudinal spin alignment can be used to measure the Loshcmidt echo.

Figure 2.7: From left to right and up to down the panels show the probability amplitudes as a function of time for the
accessible states in the system evolution for values of log(J/p) = −0.73,−0.11, 0.34, 0.67→ J/p ≈ 0.19, 0.78, 2.19, 4.68.
In the labels |ci(t)|2| ≡ | 〈ψi|ψ(t)〉 |2.

Figure 2.8: The left (right) panel shows the Loschmidt echo L(t) for J/p ≈ 0.78 (J/p ≈ 4.68). In the left panel the
vertical dashed lines are half-integers multiples of the the first Poincare recurrence time Tr ≈ 18.34p−1. When t = Tr

L(t) ≈ 0.997. The second recurrence time is shorter than the first. The half-integers multiples of the first recurrence
time coincide with local maxima and minima in the fidelity due to the quasi-periodic nature of the evolution. For
longer times this coincidence is broken. In the right panel the vertical dashed lines are half-integer multiples of the
the first Poincare recurrence time Tr ≈ 469.55p−1. Due to the long time shown and its rapid oscillation the line for
L(t) looks like is filling all the colored region but is not.
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Figure 2.9: The left panel shows the Loschmidt echo L(t) and the rate function λ(t) as functions of time for J/p = 1.00.
The right panel shows the Loschmidt echo L(t) and the rate function λ(t) as functions of time for J/p ≈ 1.66. The
dashed vertical lines are set at the peaks of the rate function which signal a Loschmidt echo L(t) < 0.001. In the right
panel the plot is centered around Tr/2 ≈ 31.6 which is very close, but not exactly equal, to the time in which λ(t) is
highest.

2.3.3 Spin-z Correlations

For the trimer there are two different two-point spin-z correlation functions

C12(t) =
〈
Ŝz1 Ŝ

z
2

〉
−
〈
Ŝz1

〉〈
Ŝz2

〉
and C13(t) ≡

〈
Ŝz1 Ŝ

z
3

〉
−
〈
Ŝz1

〉〈
Ŝz3

〉
. (2.3.3.1)

In our specific dynamics these correlations time averages are given by

C12(t) = −|c1(t)|2/2, C13(t) = −|c2(t)|2. (2.3.3.2)

Figure 2.10: The log(J/p) is taken in base 10 and is shown with a step of 0.01 between points. The solid lines show
the two-point spin-z correlation functions C12(t) and C13(t) averaged over integer multiples of the half-recurrence
times nTr/2 for each value of log(J/p). We choose different decreasing values of n between 80 for J/p < 1.00 and 1
for J/p > 25, this implies that the integration times nTr/2 approximately ranged between 252 p−1 for J/p ≈ 0.04 to
6700 p−1 for J/p ≈ 25.12. The dotted lines show C12(t) and C13(t) averaged over a fix value of T = 10 for each value
of log(J/p). The horizontal dashed lines are set at −1/3 and −1/6.

In figure 2.10 we plot the two-point spin-z correlation functions time average over integer multiples of the
half-recurrence times Tr/2 for each value of log(J/p). Their first-derivatives inflection points identify an
intermediate regime but not as precisely as bipartite entropies and we omit showing them. We also plot
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their time average over an unique constant cutoff T = 10 p−1 for each value of log(J/p). In the interaction-
dominant regime the averages over both short and long times of C12(t) and C13(t) converge towards −1/6
and −1/3 respectively. In the intermediate regime the short time average oscillates around the average in
the recurrence times. This implies that the predicted Poincare recurrences and the overall behavior of the
dynamics are not well trapped by the average of the two-point spin-z correlation functions, as there is no
substantial difference between the short time averages and the recurrence time averages. Nonetheless, in the
intermediate regime the evolution of both C12(t) and C13(t) reflect the overall behavior and the Poincare
recurrences of the system. In the appendix Trimer Additional Results we further discuss the long time
evolution of C12(t) and C13(t).

We note that for any fix T , that is not extremely long, the oscillations seen in the average when T = 10 p−1

are unavoidable due to the different time scales of the emerging dynamics for the different values of J/p. We
stress that these oscillations in the averages, when the average is taken for a short fix T throughout all the
J/p spectrum, do not carry any significant physical information.

2.3.4 Bipartite Entropies

The bipartite entropies S12−3(t) and S13−2(t) are

S12−3(t) = S(ρ3(t)) = −(|c1(t)|2/2 + |c2(t)|2) log

(
|c1(t)|2/2 + |c2(t)|2

2

)
−
(
|c0(t)|2 + |c1(t)|2/2

)
log
(
|c0(t)|2 + |c1(t)|2/2

)
,

(2.3.4.1)

S13−2(t) = S(ρ2(t)) = −|c1(t)|2 log

(
|c1(t)|2

2(1− |c1(t)|2)

)
− log

(
1− |c1(t)|2

)
. (2.3.4.2)

Figure 2.11: The upper left (right) panel shows the short time evolution of S12−3(t) (S13−2(t)) for J/p ≈ 2.19. The
lower left (right) panels show the long time evolution of S12−3(t) (S13−2(t)) for J/p ≈ 2.19.

In figure 2.11 we show the long and short time evolution of S12−3(t) and S13−2(t) for J/p ≈ 2.19. We remark
that the lowest value of J/p at which S12−3(t) reaches a value higher than 0.999 is J/p = 1.00, which is the
same value of J/p such that the maximum entropy is reach in the dimer. In the appendix Trimer Additional
Results we give a plot showing the maximal values reach by the bipartite entropies as a function of log(J/p).
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In the lower panels of figure 2.11 we highlight with circular red markers the minimal values of S12−3(t) and
S13−2(t) within each quasi-period Tm. The time at which this minima change from increasing to decreasing
is when finite size effects start to dominate the dynamics. This is very clear in the evolution of S12−3(t),
see the lower left panel. Notice that the behavior of S13−2(t) is different from the behavior of S12−3(t), see
the lower right panel. We interpret their different behavior in terms of mutual information and the parity
symmetry of the system below in Mutual Information. See the appendix Trimer Additional Results for plots
off the long time evolution with other values of J/p.

In figure 2.12 we show the time averages S13−2(t) and S12−3(t) for a fix time T = 10 p−1 for all values
of log(J/p). We also show the time averages taken over integer multiples of half-recurrence times Tr/2 for
each value of log(J/p). In contrast to the spin-z correlations, the time averages of the bipartite entropies
clearly reflect the overall evolution and Poincare recurrences of the dynamics, as shown by the large difference
between the averages taken for a fix T throughout the whole J/p spectrum, and the averages taken over the
recurrence times. The classification of the different emerging dynamical regimes is more complete and richer
when the averages are taken over the Poincare recurrence times instead of an arbitrary value T . In other
words, we need to identify the times at which finite-size effects enter the dynamics and ruled them out. We
stress that this is one of the main results of this thesis.

Figure 2.12: The log(J/p) is taken in base 10. The averages over nTr/2 were calculated for all values of log(J/p) ∈
(−2, 1.7) with a step of 0.01. We choose different decreasing values of n between 80 for J/p < 1.00 and 1 for J/p > 25,
this implies that the integration times nTr/2 approximately ranged between 252 p−1 for J/p ≈ 0.04 to 6700 p−1 for

J/p ≈ 25.12. The vertical dashed (green) and dashdotted (yellow) lines are set at the inflection points of S13−2(t)
′

and S12−3(t)
′

respectively. The recurrence times were manually identified for all values of log(J/p) between 0.2 and
1.7 with a step of 0.05. For the calculation of the time average entropies, the Poincare recurrence times Tr were
obtained from an exponential fit of the manually obtain values. We show a plot with the exponential fitting of the Tr

times in the appendix Trimer Additional Results. Although the curves for the averages S12−3(t) and S13−2(t) appear
smooth, numerically their derivatives were discontinuous at all points. We deemed this discontinuities as non-physical.
To calculate the inflection points of the derivatives the numerical data was fitted to a polynomial using the Numpy
built-in package Polynomial.

In figure 2.12 the vertical dashdotted (yellow) and dashed (green) lines are set at the inflection points of the
first derivative with respect to log(J/p) of the averages S12−3(t) and S13−2(t) taken over the recurrence times
Tr which are, respectively, log(J/p) = −0.65,−0.11,→ J/p ≈ 0.22, 0.78 and log(J/p) = −0.73,−0.20, 0.67→
J/p ≈ 0.19, 0.63, 4.68. These points allow us to define four different dynamical regimes similar to the ones
defined in the dimer.
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We define the local-dominant regime for J/p < 0.19, where we identify the first inflection point of S13−2(t)
′
.

In this regime, the system evolves near the initial state and the entropies are small at all times with S13−2(t)
being slightly larger than S12−3(t).

We define the first intermediate-regime, J/p ∈ (0.19, 0.78), where we identify the second inflection point

of S12−3(t)
′

at J/p ≈ 0.78. Makes no difference to the following discussion to define the first-intermediate

regime with J/p ∈ (0.19, 0.63), where we identify the second inflection point of S13−2(t)
′

at J/p ≈ 0.63. In
this regime, the time average bipartite entropies increase very rapidly as J/p increases. An important point
in this transition regime occurs at log(J/p) = −0.46→ J/p ≈ 0.35. Here, the time average S12−3(t) becomes
larger than S13−2(t). We comment on the interpretation of this point below in Mutual Information.

We define the second intermediate regime, J/p ∈ (0.78, 4.68), where we identify the third inflection point of

S13−2(t)
′

at J/p ≈ 4.68. In this regime, S13−2(t) stabilizes near its asymptotic value reaching its maximum
at J/p ≈ 2.19. The S12−3(t) continues to increase, albeit more slowly than in the first intermediate regime,
towards its value in the interaction-dominant regime defined below. Important points in this regime are
log(J/p) = 0.22→ J/p ≈ 1.66 and log(J/p) = 0.00→ J/p = 1.00. The value J/p ≈ 1.66 is the minimal value
where signatures of a dynamical quantum phase transition appear in the dynamics. The value J/p ≈ 1.00 is
the minimal ratio where the maximum of S12−3(t) is higher than 0.999.

We define the interaction-dominant regime for J/p > 4.68. In this case, the averages of the entropies
stabilize and remain very close to the ones given at J/p ≈ 4.68. To highlight this, in figure 2.12 we plotted
the horizontal dashed (light blue) line at the value of S12−3(t) averaged over its recurrence time for a large
J/p ≈ 50.12 approaching the asymptotic limit within the limitations of our numerical calculation, which we
find is very similar to the one obtained for J/p ≈ 4.68.

We remark that the averages in the interaction-dominant regime of S12−3(t) over the recurrence times are
much higher than the average entropy obtained in the limit J/p→∞ S12−3(t) ≈ 0.7328. On the other hand,
the time averages S12−3(t) for a fix T = 10 p−1 for all values of J/p seem to indicate that in the interaction-
dominant regime S12−3(t) converges towards this asymptotic value S12−3(t) ≈ 0.7328. This is due to the fact
that the quasi-periodic evolution at short times resembles the periodic evolution of the system in the limit
J/p→∞. Further, these short time averages also seem to indicate that a higher bipartite entropy is build on
average in the intermediate regime. This is so because in the intermediate regime the system quickly departs
from the initial state, and low entropy states disappear from the dynamics until finite size effects dominate
the dynamics (see the lower left panel of figure 2.11).

For the above stated reasons, and to avoid non-physical fluctuations in the time average of relevant quantities,
we stress the importance of identifying the half-recurrence times at which finite-size effects start to dominate
the dynamics for all ratios of J/p. We also remark that simply choosing a longer arbitrary time T is
not enough to avoid the non-physical fluctuations in the averages and appropriately capture the long time
asymptotic averages T → ∞. Further, studying the time average over the Poincare recurrence times of the
bipartite entropies allow us to obtained a more complete and richer classification of the emerging dynamics
in comparison with the time averages of the two-point spin-z correlation functions.

In the appendix Trimer Additional Results we provide a plot showing the bipartite entropy averages for
values of T = 20, 50, 100, 1000.

2.3.5 Mutual Information

In order to give a correct interpretation of the behavior of S12−3(t) and S13−2(t) seen in the lower panels of
figure 2.11, we study the mutual informations I12, I13 and I1−23 which by definition are

I12(t) = S1(t) + S2(t)− S12(t),

I13(t) = S1(t) + S3(t)− S13(t),

I1−23(t) = S1(t) + S23(t)− S(t)

(2.3.5.1)

33



where Si(t) ≡ S(ρi(t)), Sij(t) ≡ S(ρij(t)) and S(t) ≡ S(ρ(t)) is the von Neumann entropy of the system, and
ρij(t), ρi(t) are the corresponding reduced density matrices. As the state of the system is pure at all times
it holds that S12−3(t) = S3(t) = S12(t) and S13−2(t) = S2(t) = S13(t). From the parity symmetry of the
system it also holds that S1(t) = S3(t). Therefore, the following relations between mutual informations and
bipartite entropies hold:

S13−2(t) = I12(t), and S12−3(t) = (I12(t) + I13(t))/2 = I1−23(t)/2. (2.3.5.2)

The relations above allow us to interpret the different dynamical behaviors of the bipartite entropies S13−2(t)
and S12−3(t) as follows.

For values of J/p < 0.35 it holds that S13−2(t) > S12−3(t) =⇒ I12(t) > I13(t). This inequality agrees well
with physical intuition. When a local interaction dominates the dynamics low information is shared between
the spins, and the information shared by adjacent spins is slightly larger than the information shared between
non-adjacent spins. As the interaction parameter increases the average mutual information between the
non-adjacent permutable spins 1-3 increases faster than the average mutual information between adjacent
spins 1-2, 2-3. When the local and interaction parameters have equal magnitude, J/p = 1, the average
I13(t) ≈ 0.9064 is already much larger than the average I12(t) ≈ 0.6448. Remarkably, this is the first point
such that the mutual information I1−23, which in words is the information shared by the first spin with the
rest of the chain, reaches values higher than 1.999 in the dynamics. As J/p continues increasing so does
I13(t), while I12(t) keeps growing but very slowly until reaching its maximum at J/p ≈ 2.19, and then starts
converging toward its asymptotic value of 0.6574. For large values of J/p > 4.68 the average I13(t) continues
growing but insignificantly and it stabilizes around I13(t) ≈ 1.024.

As it can be seen from the long time evolution of S12−3(t) = I1−23(t)/2, shown in the lower panels of figure
2.11, as more time passes the average amount of information shared by the non-adjacent permutable spins 1
and 3 increases, while the average of information shared between adjacent spins remains stable. We conjecture
that in much larger chains this behavior will be observable only in the permutable spins near the middle
point of the chain due to the Lieb-Robinson bound [64]. Nonetheless, further exploration into progressively
larger chains is needed to reach more definitive conclusions.
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Chapter 3

Further outlook

We believe that our work opens an opportunity to study three different very interesting problems. We first
ask, how will the environment of the system affect its time scales? As in the intermediate-regime the Poincare
recurrences times are within experimental possibilities we believe it should be possible to determine how does
the environment affect the returning times to the initial state of the system. A related question can be
formulated in terms of entropies or mutual information. As we showed the mutual information between the
non-adjacent spins 1-3 largely increases with time, will this be the same in an open system? it will greatly
decrease, increase or remain the same with the influence of the environment? will the parity symmetry
continue dominating the distribution of information? will the time averages of bipartite entropies still be
adequate order parameters?

A second research pathway that we identify remains in the domain of closed quantum systems. In this
category we identify yet another two different problems of interest. The first one is the obvious extension
to larger chains with the same model. As we have identified signatures of a DQPT in the finite-chain the
natural question is, will this signatures remain for larger chains? will the same four dynamical regimes that
we have defined continue appearing? A study similar to the one we did here and the one done in [36] is, in
our opinion, of great interest.

The second research pathway within the framework of closed systems is related to the phase-diagram of the
XXZ-spin-1 model studied in [35]. Due to the time-reversibility of unitary dynamics we believe that the
emerging dynamics following the same protocol we used here, but with positive anisotropy and interaction
terms, will give similar results. In the phase diagram of the model this would be a quench from a large-D
phase not to another phase of the model, but rather to a transition zone of it between two other phases.
Therefore, we propose to study the quench dynamics emerging from the initial state that we used here with
the following Hamiltonian

H = ~p
∑
i

(Ŝzi )2 + ~
∑
〈i,j〉

[
J(Ŝxi Ŝ

x
j + Ŝyi Ŝ

y
j ) +±δJz(Ŝzi Ŝzj )

]
. (3.0.0.1)

As is highly likely that in the finite case with Jz = 0 there will be signatures of a DQPT, we ask: will any
value of Jz break this signatures? or there is a range either positive, negative or both for which the signatures
are conserved? We believe that a systematic study of these quench dynamics from the large-D phase towards
the XY and Haldane phases near the transition line between them will help bring light on the connection
between DQPT and equilibrium phase-transitions. We emphasize that our results are preliminar and a first
step towards this direction is a numerical study of the emerging dynamics with both positive interaction
terms and positive anisotropy.
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Conclusions

In this work we have studied the out of equilibrium emerging dynamics of a XY-spin-1 chain with single-
ion anisotropy following a protocol of quantum quench. We have found that with the proposed model it is
possible to obtain maximally entangled pairs of spin-1 systems starting from a completely separable state.
We have determine signatures of a dynamical quantum phase transition around the point J/p ≈ 1.66 in the
trimer case (i.e. N = 3). In distinction to what happened in a a recent study on the out of equilibrium
dynamics of the 1D-TFIM, where the non-analicities of the rate-function appeared only in discrete values of
the quench parameters [38], the non-analicities in the rate function in our spin-1 model appear for all values
of J/p > 1.66.

Our results show that determining the times at which finite-size effects dominate the dynamics, throghout
the whole spectrum of the quench parameters, is fundamental to get the maximum physical information
from time average quantities such as two-point spin-z correlations functions and bipartite entropies. We also
determined that the time average over Poincare recurrence times of bipartite entropies are adequate order
parameters, and provide a more complete and richer classification of the dynamics than the time average of
the two-point spin-z correlation functions.

We analyzed the mutual information averages between the different spins in the case N = 3. This initial
analysis indicates that when the interaction among spins is large enough in comparison to the local anisotropy,
the mutual information between the permutable spins is larger than the mutual information between adjacent
spins. However, this requires further exploration into larger chains.
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Appendix A

Proofs

Proof
[
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]
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Ŝyi Ŝ
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With them is direct to obtain the commutator of each (Ŝα)2 with the interaction part of the Hamiltonian:(Ŝx)2,
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Ŝx1 , Ŝ
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Ŝyi , Ŝ
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{
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Collecting terms it follows that
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x
i

}
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]
= i
(
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z
i − Ŝxi Ŝ
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x
i Ŝ
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y
i

])
= 0.

(A.7)

And therefore
[
Ŝ2, H

]
= 0. �

Proof of U(1) symmetry
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Is clear that it suffices to show that
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= (Ŝzk)2; (A.10)

exp
(
iθŜzk
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−iθŜzk

)
exp
(
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The first equality A.10 follows immediately from the known identity
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y
k for odd n

(A.14)

Cn(iθŜzk , Ŝ
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From where
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exp
(
iθŜzk
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Immediately follows that A.11 is true, and therefore A.8 is proven. �
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α
i Ŝ
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In the odd case the proof of the commutation with the local term is written in the same way as above.
Explicitly writing the commutator with the interaction termΠ,

N∑
j=1
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2 + ŜαN−1Ŝ
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α
(N−3)/2Ŝ
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And it is proven that [Π, H] = 0. �
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Appendix B

Trimer Additional Results

Here we start discussing the connection between Tm and Tr with the eigenfrequencies of the system. Tm is
a ‘least common’ multiple of the system frequencies Tm = l∆10 = m∆21. The times Tr also are near integer
multiples of the frequencies, but in contrast to Tm, for J/p > 1.00 Tr continues growing quadratically with
respect to J/p. In figure B.1 we plot both Tm and Tr as a function of log(J/p).

Figure B.1: Values of Tm and Tr in units of p−1 as a function of log(J/p). The log(J/p) is taken in base 10. The
dotted line shows Tm as define in the main text. The dashed and solid lines show Tm defined as the time where the
system reaches a fidelity F0(t) > 0.98, 0.95 respectively. The line with the circle markers shows an exponential fit
to the Tr times, manually found by determining the half-time recurrence point in which the system starts returning
to the initial state for each value of log(J/p) between −0.20 and 1.70 with a step of 0.05. The time Tr grows in an
approximate cuadratic form with respect to J/p.

In the left panel of figure B.2 we plot the values of the frequencies ∆10,∆21 as a function of log(J/p). In the
limit J/p → 0 Rf → 0 due to the degeneracy of the ground state when J = 0. In this limit the dominant
angular frequency is ∆21 ≈ 2p from where the period of evolution will be close to π. This explains the
values of Tm when p >> J (shown in the figure B.1). Around log(J/p) = 0.8 the angular frequency ∆10

becomes large enough to influence Tm shown by the first rise in the right panel of the figure B.2. In the
intermediate regime Rf rapidly increases and the values of l,m increase by finite jumps between near integers
values. The values of Tm shown in the figure B.1 naturally correlate to this pattern. The peaks as the one
in log(J/p) = −0.2 are mostly eliminated when a fidelity of 0.98 is put as a threshold to define Tm instead of
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0.99. As Rf ∼ 1 Tm approximately becomes 2T10 ≈ 2T21 ≈ T20. This explains the observed quasi-periodic
evolution in the interaction dominant regime. In this regime Tm ≈ π/(

√
6J + 2ap) with a ≡ p/3

√
6J , which

we obtained by applying second order perturbation-theory to the effective Hamiltonian.

Figure B.2: The log(J/p) is taken in base 10. The left panel shows ∆10 and ∆21 in units of p as a function of log(J/p).
The right panel shows the values of l,m when Tm is defined as in the main text. The peaks of the fidelity to determine
Tm were located using the Scipy built-in function find-peaks. In both panels the vertical dashed (dashdotted) lines

are set at the inflection points of S(t)13−2
′

(S(t)12−3
′
)

.

In figure B.3 we plot the weight of the effective Hamiltonian eigenstates in the accessible states |ψ1〉 and |ψ2〉.
In the limit J/p→ 0 both states are linear combinations of the ground and first excited states each one with
weight 1/2. In the intermediate-regime there is a ‘mixing’ in the weights distribution. In the limit J/p→∞
|ψ1〉 is a liner combination of the ground and most excited states each with weight 1/2, and |ψ2〉 is a linear
combination of all three eigenstates with a dominant weight of first-excited state |E1〉 equal to 2/3. As the
weights of the effective Hamiltonian eigenstates in the accessible states |ψ1〉 and |ψ2〉 are not equal to their
weights in the initial state, the probability amplitudes | 〈ψ1|ψ(t)〉 |2 and | 〈ψ2|ψ(t)〉 |2 will never be one.

In the local-dominant regime J/p < 0.22 the system is always near the initial state and quasi-periodically
returns to it completing a Poincare recurrence. When J/p ∼ 1.00 the system oscillates without periodicity
departing from the initial state, until reaching a minimal value of the fidelity before finite size effects dominate
the dynamics and the system starts returning to the initial state completing a Poincare Recurrence. We show
the long time evolution of L(t) for J/p ≈ 0.22, 1.00 in the figure B.4.

Figure B.3: Weights of the effective Hamiltonian eigenstates in the accessible states |ψ1〉 and |ψ2〉 as a function of
log(J/p). The log(J/p) is taken in base 10.
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The longitudinal spin alignment at time t reads

A = 2− 2(|c1(t)|2 + |c2(t)|2) = 2|c0(t)|2. (B.1)

Thus A(t) evolves in a similar way as L(t) as shown in the main text in figures 2.8 and 2.7. By measuring
A(t) the Loschmidt echo L(t) will be indirectly measured and it will be possible to determined both the
Poincare recurrence times Tr of the system for J/p ∼ 1, and the lowest value of J/p at which the system
reaches orthogonality (i.e. L(t) ≈ 0→ A(t) ≈ 0). For larger values of J/p the experimental values of Tr are
too large and decoherence effects will dominate the dynamics. Nonetheless Tm gets shorter as J/p increases
and its value can in principle be well determined by measuring A(t). For larger chains the fidelity will not
be directly measured by the longitudinal spin alignment, but both times Tr and Tm can be well detected as
A(t) ≈ 2 only when L(t) ≈ 1. Even when decoherence effects start to dominate the dynamics it should be
possible to measure Tm and Tr as in general the only spin-eigenstate in which A = 2 is |000〉 ≡ |ψ0〉.

Figure B.4: The left panel shows L(t) for log(J/p) = −0.65→ J/p ≈ 0.22. The right panel shows L(t) for log(J/p) =
0.00→ J/p = 1.00. The vertical dashed lines in both panels are set at integers multiples of Tr/2.

Figure B.5: Loschmidt echo minimal values reach in the dynamics as a function of log(J/p). The log(J/p) is taken in
base 10. The minimum are shown for all values of log(J/p) between −1.6 and 1.6 with a step of 0.01.

The evolution of the spin-z correlations C12(t) and C13(t) for J/p ∼ 1 clearly reflect the Poincare recurrences
of the system as shown in the upper panels of figure B.6. Nonetheless, for longer values of J/p, C12(t)
becomes almost completely quasi-periodic and the Poincare recurrences signatures are lost as we show in the
lower panels of figure B.6. In contrast, in the evolution of C13(t) the Poincare recurrence signatures remain
in the interaction-dominant regime, see the lower right panel of figure B.6.
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Figure B.6: Long time evolutions of the spin-z correlations for log(J/p) = 0.00, 1.00→ J/p = 1.00, 10.00. The vertical
dashed lines are set at integer multiples of the half-recurrence time Tr/2. For J/p ≈ 10 Tr/2 ≈ 1063 p−1 not shown
in the lower panels.

Figure B.7: The upper left (right) panel shows the long time evolution of S12−3(t) (S13−2(t)) for J/p ≈ 0.22. The
lower left (right) panels show the long time evolution of S12−3(t) (S13−2(t)) for J/p = 1.00.

In the figure B.7 we show the evolution of the bipartite entropies for J/p = 1.00. As commented in the main
text this is the lowest value of J/p such that S12−3(t) > 0.999 at some point in the dynamics. This means
that the system reaches a state in which the information shared between the border spin 1 (or 3) with the
rest of the chain is maximal.

In the figure B.8 we show the maximal values reach by the bipartite entropies in the dynamics. The lowest
value of J/p in which the bipartite entropy S13−2(t) reaches values higher than 0.999 is J/p ≈ 0.78 →
log(J/p) = −0.11, which actually coincides with an inflection point of the first derivative of S13 − 2(t). This
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is most likely just a coincidence. Note that the maximal value reach by S13−2(t) is greater than the maximal
value reach by S12−3(t) for J/p < 1.

Figure B.8: Maximal values reach by the bipartite entropies in the evolution of the system. The log(J/p) is taken in
base 10. The maximum are shown for log(J/p) ∈ (−1.5, 1.5) with a step of 0.01.

Figure B.9: Averages of the bipartite entropies for different fix values of T for all values of log(J/p) between (−1.5, 1.5)
with a step of 0.01.
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As commented in the main text, when the bipartite entropies are averaged over fix values of T spurious non-
physical oscillations appear throughout the J/p spectrum, even for large values of T . For increasing values
of T the average entropies S12−3(t) get closer to the average calculated over integer multiples of the half-
recurrence times. For large values of J/p the curve for T = 1000 p−1 still converges towards the asymptotic
value of the average due to the fact that the half-recurrence times become extremely large. For example for
log(J/p) = 1.5 Tr/2 ≈ 10605 p−1. Therefore, we conclude that although in the interaction-dominant regime
the unitary evolution predicts an emerging dynamics different from the one that is obtained in the asymptotic
limit J/p → ∞, in any experimental situation the observed dynamics in this regime will resemble the one
that can be obtained setting p = 0, J > 0, which has a period T = π/

√
6J . The experimental apparent

period for a small but non-zero value of p should be given by Tm ≈ π/(
√

6J + 2ap) with a ≡ p/3
√

6J .
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