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Abstract

Spin chains or spin networks are a central problem in the study of many-body systems. They are

of great interest because they exhibit complex physical phenomena, thanks to the fact that they

are strongly correlated systems. Particularly in the zero temperature regime, these systems exhibit

quantum phase transitions, which are characterized by distinct changes that arise in the properties

of the fundamental state of the system as a non-thermal control parameter is varied. The changes

exhibited by a system under a quantum phase transition are usually studied by order parameters

characterizing one of the phases in transition, and by looking for discontinuous or singular behav-

ior in the ground state energy of the system. However, it has been some time since it has been

known that these changes can also be described through the behavior exhibited by bipartite and

multipartite quantum correlations in these systems. These quantum correlations can be studied

using correlation estimators, which allow the identification of the states through which the physical

system transits when varying the control parameter, on which the Hamiltonian of the system de-

pends. The conceptual framework for these correlation estimators has been incorporated into this

type of study thanks to the field of Quantum Information, giving rise to the so-called Quantum

Matter field.

In general, approximation methods, both theoretical and numerical, are used to solve these systems,

since it is not common to find integrable systems, which have exact solution. Numerical methods

include the Density Matrix Renormalization Group (DMRG) algorithm. This method has the ad-

vantage of simulating the fundamental state of a finite or infinite chain of spins with satisfactory

numerical accuracy, without having to span the entire Hilbert space in the process. This is a very

relevant point since this dimension scales exponentially with the number of sites considered in the

simulation. In this work, we will study the quantum phase transitions present in the spin-1 Heisen-

berg XXZ model with single-ion anisotropy. To find the fundamental state of the system, we will

use the infinite DMRG algorithm, simulating an infinite chain with open boundary conditions. In

particular, we will focus on the bipartite correlations exhibited by the two central sites of the chain.

By obtaining the reduced density matrix of these sites we can calculate the quantum correlations

they exhibit using Quantum Discord (QD) and Entanglement. By observing the behavior of these

correlation estimators, we can determine the quantum phase transitions of the system.
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Resumen

Las cadenas o redes de spin constituyen problema central en el estudio de sistemas de muchos

cuerpos. Son de gran interés pues exhiben fenómenos físicos complejos, gracias a que son sistemas

fuertemente correlacionados. En particular en el régimen de temperatura cero estos sistemas ex-

hiben transiciones de fase cuánticas, las cuales se caracterizan por exhibir cambios distintivos que

surgen en las propiedades del estado fundamental del sistema a medida que un parámetro de con-

trol no térmico es variado. Los cambios que exhibe un modelo bajo una transición de fase cuántica

se suele estudiar mediante parámetros de órden que caractericen a una de las fases, y mediante

comportamientos discontinuos o singulares en la energía del estado fundamental del sistema. Sin

embargo, ha pasado tiempo desde que se sabe que estos cambios también pueden ser descritos a

través del comportamiento que exhiben las correlaciones cuánticas bipartitas y multipartitas en es-

tos sistemas. Estas correlaciones cuánticas pueden estudiarse usando estimadores de correlación, los

cuales permiten identificar los estados por los cuales transita el sistema físico al variar el parámetro

de control, del cual depende el Hamiltoniano del sistema. El marco conceptual para estos esti-

madores de correlaciones cuánticas se ha incorporado a este tipo de estudios gracias al campo de

la Información Cuántica, dando lugar al denominado campo de estudio de la Materia Cuántica.

En general para resolver estos sistemas se suelen usar métodos de aproximación, tanto de cálculo

como numérico, pues no es lo común encontrarse con sistemas integrables que poseen solución

analítica. En el ámbito de los métodos numéricos se encuentra el algoritmo de Density Matrix

Renormalization Group (DMRG). Este método posee la ventaja de simular el estado fundamental

de una cadena finita o infinita de spines con buena precisión numérica, sin tener que recorrer todo

el espacio de Hilbert en el proceso. Este es un punto muy relevante, ya que esta dimensión escala

exponencialmente con el número de sitios que se consideran en la simulación.

En este trabajo estudiaremos las transiciones de fase cuánticas presentes en el modelo de Heisen-

berg XXZ de spin 1 con anisotropía de ión. Para encontrar el estado fundamental del sistema,

utilizaremos el algoritmo de DMRG infinito, simulando una cadena infinita con condiciones de

borde abiertas. En particular nos centraremos en las correlaciones bipartitas que exhiban los dos

sitios centrales de la cadena. Obteniendo la matriz densidad reducida de estos sitios podemos cal-

cular las correlaciones cuánticas que presentan mediante los estimadores de correlación Quantum
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Discord (QD) y Entrelazamiento. Al observar el comportamiento de estas funciones, podremos

determinar las transiciones de fase cuánticas del sistema.

Palabras claves: Transición de fase cuántica; Estimador de correlación cuántica; Quantum Dis-

cord; Entrelazamiento; Density Matrix Renormalization Group; Cadenas de spin.

e



Dedicatory

Frase 1

Autor 1.

Frase 2

Autor 2.

f



Agradecimientos

Son muchas las personas a quienes deseo agradecer, puesto que han contribuido de diferentes man-

eras a mi vida académica y privada. Quisiera comenzar por agradecer a mi profesor guía, el Dr.

Juan Carlos Retamal por toda la formación que me ha entregado durante mi carrera de pregrado y

postgrado. No sólo me ha entregado herramientas académicas para enfrentarme a la investigación,

sino que también me ha mostrado contención y amabilidad en los momentos donde la carga de este

trabajo me hizo sentir abrumada. Extiendo este agradecimiento al Dr. Guillermo Romero, quien

también ha formado parte importante en mi formación como investigadora, quien me enseñó (por

repetición) que pedir ayuda ante problemas que nacen del proceso natural de investigar está bien,

pues la ciencia se hace en comunidad. Agradezco también a Francisco Albarrán por su siempre

buena disposición y ánimo para resolver dudas. Manifiesto mi gratitud también a los profesores

y profesoras que han sido parte de mi formación académica universitaria, especialmente a quienes

forman parte del programa de postgrado. Gracias por siempre escuchar y responder mis infinitas

preguntas en clases.

Deseo agradecer a mi familia, por todo el amor que me han entregado. A mis padres, quienes, a

pesar de venir de un lugar humilde, siempre incentivaron mi curiosidad ante el mundo y lograron

darme herramientas para llegar hasta acá. A mis hermanos, quienes afrontaron las adversidades

de la vida y lograron darles vuelta, propiciando una situación más favorable para mí. A ustedes,

gracias por siempre apoyarme.

Quisiera agradecer a mis amigos, por siempre confiar en mí y escucharme cuando lo necesité. Me

doy cuenta a medida que crezco, que la amistad se vuelve algo difícil de mantener ante las respon-

sabilidades de la vida. Espero contar con su amistad y apoyo en las siguientes instancias donde

deba escribir nuevos agradecimientos.

Agradezco profundamente a mi pareja, Luciano. Contar con tu apoyo y confianza en mí me inspira

profundo valor ante mis objetivos.

Finalmente agradezco a la Vicerrectoría de Postgrado y al centro CEDENNA. Este trabajo

de tesis fue financiado con el Financiamiento Basal para Centros Científicos y Tecnológicos de

Excelencia (Grant No. AFB2200001).

g



Acknowledgements

Thanks to Vicerrectoría de Postgrado and the CEDENNA center. This thesis work was funded

by the Financiamiento Basal para Centros Científicos y Tecnológicos de Excelencia (Grant No.

AFB2200001).

h



Notations

In this thesis, we set ℏ = 1.
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Chapter 1

Introduction

Spin chains are many-body systems that exhibit several exciting phenomena to study, such as

quantum phase transitions (QPT), which are phase transitions driven by quantum fluctuations at

cero temperature, when a parameter of the Hamiltonian is varied (magnetic field, anisotropy, etc.).

Traditionally the QPTs are detected by discontinuous changes in the ground state energy or in

the behavior of observables associated with the system [1]. However, it has been a while since

the knowledge of the link between QPT and quantum correlations, and how by means of Quantum

information theory this link has been exploited very successfully. The behavior of several well-known

systems has been studied, particularly in spin 1
2 systems. In higher dimensions, however, the work

is not as extensive. This is despite higher dimensional systems showing remarkable richness and

complexity in their phase diagrams. In spin-1 systems the behavior that some systems should have

is known. Still, the findings of this have been reported by approximation methods or numerical

methods in general, since for higher spin systems an analytical result is not usually available.

It is in this place where is framed this thesis. We want to study the spin-1 Heisenberg XXZ model

with single-ion anisotropy and the QPTs that this model exhibits. To accomplish that objective, we

have covered and connected different areas. One of these has been quantum correlation estimators,

elements borrowed from the Quantum Information domain, such as Entanglement and Quantum

Discord (QD). These correlation estimators require knowledge of the state of the system in question,

which connects us with the numerical aspect of this thesis, the Density Matrix Renormalization

Group (DMRG) algorithm. To study the quantum correlations, we need to simulate the ground

state of the system, which is made under the technique of DMRG, a numerical technique that

has proven to be very useful and accurate in simulating strongly correlated systems such as spin

chains. As our work centralizes on studying bipartite correlations, we pay particular attention

to the central sites of the simulated chain, to whose reduced density matrix we will apply these

correlation measures. The latter requires an optimization process since some correlation estimators

are defined on the basis of a convex roof problem. After verifying if the optimization process is
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correct, the quantum correlations of the system are calculated, where the QPTs will be finally

located. As can be seen, this thesis covers a non-trivial topic through the use of interdisciplinary

tools and knowledge.

The outline of this thesis is the following. In the first section of this introduction, the background of

the problem and the state of the art are presented. The second chapter provides the theoretical and

conceptual bases from Quantum information theory necessary to understand this thesis. The third

chapter introduces the DMRG algorithm in its infinite and finite variations and the considerations

for its correct application and use. The fourth chapter introduces formally the concepts of QPT and

some distinguished spin-1/2 models with the corresponding QPTs. Chapter five presents the results,

which are divided into two sections. The first has to do with results that test the performance of

our optimization algorithm to demonstrate the reliability of the results obtained with it, in terms

of quantum correlations. And in the second section, those results have to do with detecting QPTs

of the known spin-1/2 models, to ensure the correct performance of our DMRG algorithm, and the

study of quantum correlations in the spin-1 XXZ Heisenberg model with single-ion anisotropy.

1.1 Background and state of art

The phases of matter have been the object of fascination since old times, just by observing ev-

eryday life very natural questions arise, such as why some things are liquid and others solid or

gaseous. Why do the states of matter change with temperature? The central concept behind this

phenomenology is related to phase transitions. A phase of matter can be distinguished because, in

general, it has a macroscopic order that defines it, which changes as some thermodynamic param-

eter is varied, for example, the temperature. An everyday example of this is the change that water

undergoes during the boiling process. Another, perhaps familiar to those involved in magnetism,

is the transition from a ferromagnetic to a paramagnetic material, where magnetization disappears

after the phase transition when the critical temperature is reached and exceeded.

Traditionally, the study of phase transitions is carried out by analyzing the free energy of the sys-

tem, and correlation functions between different observables and their respective correlation length,

such as spin-spin correlations [2]. It is also known that when a system is close to certain phase

transitions it presents a scaling phenomenon [3–6], which basically shows how the behavior of a

finite system gives special signals around a particular point, such that if the thermodynamic limit

is taken this point is the critical point where occurs a phase transition. The previously mentioned

examples correspond to the so-called classical phase transitions, where thermal fluctuations are the

ones that play the relevant role in producing a change of state of a system. This thesis work is

framed in studying quantum phase transitions, which occur at temperature T = 0 [1, 2]. This

implies that thermal fluctuations are not responsible for the transition. When we move to the
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quantum regime, quantum fluctuations are the ones that determine that a system changes from

one phase to another, when a control parameter is modulated, which can be the external magnetic

field, a coupling constant, etc. As strange as it may seem at first, the way to study this type of

phase transition at temperature T = 0 does not vary with respect to the traditional approach. One

can still study the energy, critical exponents, and correlation lengths, which has been one way of

describing quantum phase transitions. However, a new way to study these phase transitions came

from the work of Osterloh, Amico, Falci, and Fazio [7] who incorporated elements from the field

of Quantum Information, such as quantum Entanglement, to approach the description of phase

transitions.

What was revolutionary about this paper was that they studied the phase transition of a system well

known to the condensed matter area, but emphasized the scaling of bipartite Entanglement to near-

est and next-nearest neighbors in the chain. The considered system was the spin 1
2 ferromagnetic

chain with an exchange coupling J in a transverse magnetic field of strength h,

H =
( N∑

i

−J
( (1 + γ)

2
σx
i σ

x
i+1 −

N∑
i

(1− γ)

2
σy
i σ

y
i+1

)
− hσz

i

)
(1.1.1)

where σα are the Pauli matrices {α = x, y, z} and N is the number of sites in the chain. This model

is equal to the Ising model when γ = 1, and to the XY model when γ = 0.

For the first time, a concept of Quantum Information associated with correlations without classical

counterparts was used to show that phase transitions could be detected by changes in the quantum

correlations of a system. In the paper, they focus on the bipartite Entanglement of 2 spins, at the

i and j positions. The relevant physical information of the problem was derived from the density

matrix of the system, obtained from the ground state. Only the pair of sites of interest were

considered and the rest was traced out from the total density matrix, leaving the reduced density

matrix of sites i and j, ρi,j . This matrix represents the bipartite mixed state of two spins. By the

late ’90s, a method to quantify Entanglement in systems like this was already known thanks to

Wootters [8] and his analytical formula for calculating Concurrence, and the relation of Concurrence

to Entanglement of formation.

In the paper, they were able to write the density matrix by taking advantage of the symmetries

of the system and also managed to fix the structure of ρ in a form that allowed them to write the

non-zero elements of the matrix based on different correlation functions. With this, they were able

to evaluate the Concurrence exactly as a function of the relative position |i− j| between the spins

and as a function of the distance |λ− λc| from the critical point, where λ = J
2h .

The results for the Ising case were captured in figure 1.1. The change in the ground state was

studied considering the first derivative of the Concurrence of the nearest neighbor with respect

to the reduced coupling strength λ. The different curves correspond to different lattice sizes, and
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Figure 1.1: The first derivative of the nearest neighbor Concurrence with respect to the reduced
coupling term λ is studied for different lattice sizes. The minimum becomes more pronounced as
the system size is increased. The left inset shows how the minimum position change and tends as
N−1.87 towards the critical point λc = 1. The right inset shows the Concurrence C(1) itself for an
infinite system [7].

the black one shows the behavior in the thermodynamic limit, where ∂λC(1) diverges while it

approaches the critical value as

dC(1)

dλ
=

8

3π2
ln |λ− λc|+ const. (1.1.2)

From the finite size scaling study, the position of the minimum λm scales as λm ∼ λc+N
−1.87, and

its value diverges logarithmically with increasing the system size as

dC(1)

dλ

∣∣∣∣
λm

= −0.2702 lnN + const. (1.1.3)

According to the scaling ansatz, taking the ratio between the two prefactors of the logarithm gives

the exponent that governs the divergence of correlation length ν. For the case of the Ising model,

ν = 1 and this is consistent with 8/3π2 ≈ 0.2702. All of the above analysis was also performed for

the next nearest neighbors, but in that case, taking the second derivative of the Concurrence. The

results agreed on the same value of the critical exponent of the Ising model.

Another relevant conclusion obtained from this paper was that universality in Entanglement was

proved, i.e., that the critical properties of Entanglement depend only on the dimensionality of the

system and the broken symmetry in the ordered phase. This was proved in a robust and general

way for γ ̸= 1.
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Another work related to Entanglement in spin chains for phase transitions is that of Osborne

and Nielsen [9]. This paper, published shortly after, also demonstrates the connection between

Entanglement and quantum phase transitions in the XY model and the Ising model.

Many papers embarked to use this existing relationship by borrowing concepts from Quantum

Information to study QPTs, obtaining successful results [10–20], between the correlator estimators

used in these articles are Entanglement [12, 14–16, 20], Quantum Fidelity [11, 19], Quantum Discord

[13, 15–17] and Quantum Coherence [17, 21], among others, just to mention a few.

Particularly relevant for this thesis are the references [12, 17]. In the first article, the spin-1 XXZ

Heisenberg model with a single ion anisotropy is examined, obtaining a phase diagram of the model

using negativity. In the second, the QPTs of the spin 1 XXZ Heisenberg model are studied using

Quantum Discord. .

With all the above context given, it is clear why it is of interest to carry out this thesis.
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Chapter 2

Quantum information elements

2.1 Summary

In this chapter, we introduce some fundamental concepts in quantum information that we will use

during the development of this thesis. First, we introduce the representation of a quantum state in

quantum mechanics for the case of isolated systems and systems interacting with an environment.

In addition, we introduce the notion of quantum correlations embedded in a quantum state, and

the quantum correlations estimators, such as Entanglement and QD. Finally, the optimization

algorithm used in the computation of quantum correlations will be described.

2.2 Fundamentals

2.2.1 Pure state

A fundamental postulate of quantum mechanics states that every isolated quantum system is de-

scribed by a state vector |Ψ⟩ that belongs to a Hilbert space H [22]. A Hilbert space is a linear

vector space on complex numbers with an inner product. The state vector satisfies the condition of

being normalized according to the statistical interpretation of the wave function given by the Born

postulate, i.e, the norm is equal to 1,

⟨Ψ|Ψ⟩ = 1 (2.2.1)

The vector state can be spanned by a set of orthonormal eigenvectors {|ϕ⟩} of an observable Ô,

|Ψ⟩ =
∑
i

ci |ϕi⟩ (2.2.2)
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where the coefficients {ci} are the probability amplitudes. In this form, the normalization condition

in 2.2.1 is equivalent to ∑
i

|ci|2 = 1

This kind of state embodies all information needed to characterize a system, that is, it can be

known all the relative phases between the eigenstates into which the vector state is spanned.

The measurement for pure states is carried out by means of projective measurement, which consist

of a set of observables {Ôω} acting in the space of the system to be measured. The observables

have spectral decomposition

Ô =
∑
ω

ω |ϕω⟩ ⟨ϕω|

=
∑
ω

ωPω

(2.2.3)

where Pm = |ϕω⟩ ⟨ϕω| are the projectors onto the eigenspace of Ô with eigenvalue ω. The projectors

fulfill two conditions, the first one is the completeness relation and the second one is the relation

of orthogonality. Both conditions can be represented as

∑
ω

P †
ωPω = I (2.2.4)

Pω′Pω = δω′ωPω (2.2.5)

For the expectation value, we can derive it from equation 2.2.3 projecting the operator into the

state |Ψ⟩

⟨Ψ| Ô |Ψ⟩ =
∑
ω

p(ω)ω (2.2.6)

where the probability of obtaining a certain eigenvalue ω from Ô is

p(ω) = ⟨Ψ| P̂ω |Ψ⟩ (2.2.7)

and the state |Ψ⟩ after the measure becomes

P̂ω |Ψ⟩√
p(ω)

(2.2.8)

7



Since the completeness equation 2.2.4 is satisfied, the probability p(ω) adds up to 1.

The evolution of an isolated system |Ψ⟩ is determined by the Schrödinger equation,

iℏ
d |Ψ⟩
dt

= Ĥ |Ψ⟩ (2.2.9)

which is equivalent to saying that the vector state evolution is described for a unitary transformation

U .

These postulates of quantum mechanics are useful to characterize a collection of identical systems,

described by the same state vector. Nevertheless, when we are faced with describing a group of non-

identical systems, we must take another path to represent a mixture of systems. The mathematical

language we seek is that of the density matrix. This formalism is particularly useful when describing

composite systems or a mixed state, as we shall see below.

For a pure state |Ψ⟩, the associated density matrix is defined as the outer product of the state with

itself.

ρ = |Ψ⟩ ⟨Ψ| (2.2.10)

If we want to translate the concept of measure for some observable Ô, it can be done from the

equation 2.2.6, obtaining

⟨Ô⟩ = Tr
(
ρ Ô
)

(2.2.11)

And in terms of the evolution of this system, we can use the fact that the evolution of an isolated

system is determined by a unitary transformation U , and we can write it as

ρ
U−→ U ρU† (2.2.12)

In the following sections, we will discuss the properties that ρ must fulfill in order to be a density

matrix representing the quantum state of a system.

2.2.2 Composite system and density matrix

It is of interest to introduce fundamental concepts for many-body systems since one of the essential

objectives of this thesis is to study spin chains. We have previously introduced the notion of pure

states, which represent a whole isolated system, independent of the number of constituents of the

total system. When we have a system composed of two or more parties, the Hilbert space of the

overall system is the tensor product of the individual Hilbert spaces for each component, that is,

HT = H1 ⊗ H2 ⊗ ... ⊗ HN [22]. Assuming each part of the total state system having the same

dimension d, then, the physical dimension of the composite system is dN .

However, it is not always necessary or required to study all the parts of a system. Often it is only

of interest to take a bipartite system, as the two central sites of a spin chain, in order to obtain the
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desired information, as Entanglement, for example. Taking an infinite spin chain as an illustration,

we can divide this system into the part of interest denoted S and the rest of the system is denoted

E as the environment. To be interested only in the information related to the system S involves

discarding the information of the environment, this implies that the reduced system now can not

be described for a state vector.

As we saw in the latter subsection, a pure state can be represented as a density matrix. Let us

suppose a global state that represents the pure state of a composite system T , the general form to

write this state as a density matrix is

ρT = |ψ⟩ ⟨ψ| (2.2.13)

where |ψ⟩ ∈ HT , and the total Hilbert space HT is the composition of each particular Hilbert

space of the constituents. Let us consider now we only wants to access the information about the

subsystem S. Suppose we measure an observable ÔS defined locally on the system S, which implies

applying the identity matrix to the other parts corresponding to E . We already know from the

equation 2.2.6 that the expectation value of this observable can be written as

⟨ÔS⟩ = tr
(
ρT ÔS

)
(2.2.14)

where the trace is over S and E states. Let us denote by ρ(S+E) density matrix of the total system

involving degrees of freedom related to E and S. In terms of this, we can write

⟨ÔS⟩ = tr(S+E)

(
ρ(S+E)ÔS

)
=
∑
S

∑
E

⟨ψS | ⟨ψE | ρ(S+E)ÔS |ψS⟩ |ψE⟩

=
∑
S

⟨ψS |

(∑
E

⟨ψE | ρ(S+E) |ψE⟩

)
ÔS |ψS⟩

(2.2.15)

By dividing the degrees of freedom in this way, the trace in the pure states defining the E part has

no effect on the operator defined locally in S, so we can define the reduced state for S as the total

state T being traced out from the degrees of freedom of the environment E . This is known as the

reduced density matrix,

ρS =
∑
E

⟨ψE | ρ(S+E) |ψE⟩ (2.2.16)

with this let us note that the information we are interested in from the subset of the total system

depends only on the system variables S. To the operation of tracing a portion of the degrees of

freedom of an entire group, it is called partial trace. The equation 2.2.15 results in

⟨ÔS⟩ =
∑
S

⟨ψS | ρSÔS |ψS⟩ (2.2.17)
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2.2.3 Mixed state

In general, when we have a composite system where we focus only on a subset of the global system,

the quantum state characterizing the state of the subset is no longer a pure state. This state

is obtained partially by tracing degrees of freedom that we do not observe and consequently, we

neglect information about them. This loss of information means that the state describing the subset

can be represented by an incoherent superposition of different pure states. These pure states are

not necessarily eigenstates of the same observable, i.e, orthogonal to each other. A mixed state

is usually called a statistical ensemble, because of the introduction of the classical probability pi

that weights the different mixture of pure states |ψi⟩. To illustrate the latter, think of a beam of

electrons whose spin direction is not determined, say 70% are in the Sx direction and 30% are in

the Sz direction [23]. This example represents a mixture of the collection of individual parts where

it is impossible to describe the total system under the same pure state.

The formalism of the density matrix is introduced to treat mixed states. In general, a quantum state

represented by a density matrix is not necessarily pure, as we have mentioned before. Generalizing

the density matrix for a pure state defined in equation 2.2.10, for an ensemble as {pi, |ψi⟩}, we

define

ρ =
∑
j

pj |ψj⟩ ⟨ψj | (2.2.18)

as the density matrix for a mixed state, where
∑

j pj = 1. The ensemble defining a mixed state is

not unique.

It is worth mentioning that when measuring an observable in a mixed state, one is calculating an

average of the possible average values Ôi = ⟨ψi| Ô |ψi⟩ of the observable Ô on each pure state in

the decomposition, given by 2.2.11, that is

⟨Ô⟩stat =
∑
i

piÔi

= Tr
(
ρÔ
) (2.2.19)

It can be shown that density matrix ρ must fulfill the following requirements

1. ρ = ρ†

2. Tr(ρ) =
∑

j pj = 1

3. ρ ≥ 0

4. Trρ2 ≤ 1

The first one indicates that the density matrix must be Hermitian. The second reflects the statistical

nature of the density matrix. The third property establishes that the density matrix must be semi-
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positive, that is, it can only have non-negative eigenvalues. This implies that we can always find

a spectral decomposition of ρ given by ρ =
∑

k αk |ϕk⟩ ⟨ϕk|, where αk are the eigenvalues and |ϕk⟩

the eigenvectors. Finally, the last property indicates that the non-diagonal elements are limited by

this constraint, in which the equality is satisfied for a pure state.

2.3 Correlation estimators

Statistically, correlation is a measure of the order in a system, quantifying the association between

the fluctuation of 2 variables with respect to the other. This order is an average measure of two

physical quantities, in space and time, that describes the strength of this relationship by means of

a mathematical function called correlation function. Throughout this thesis, we will not refer to

quantum correlations in this traditional sense, but rather when we refer to quantum correlations

we will be talking about relationships that do not necessarily have a classical counterpart nor can

they be quantified by a correlation function as described above. Quantum correlations may arise as

a consequence of quantum nature as such, as Entanglement, just as from the competition between

the different interactions that dominate the system in different regimes of a driving parameter.

In the following will be introduced the correlation estimators that quantify the two main types of

quantum correlations used in this work, Entanglement, and QD.

2.3.1 Entanglement measures

Entanglement is a quantum correlation without any equivalent in its classical counterpart. It is a

direct consequence of the superposition principle, which arise from the property of linearity of the

Hilbert space, i.e, if a system can be in a normalized vector state |ϕ1⟩ or |ϕ2⟩, also can be in a linear

combination of both α |ϕ1⟩+ β |ϕ2⟩ - with α and β satisfying the standard normalization condition

|α|2 + |β|2 = 1 -. This was the cause of a well-known scientific dispute, the EPR paradox in 1935

[24], where the plausibility of this property was discussed. It was not until the ’70s when this

fundamental concept was experimentally proven correct by a generalization of Bell’s inequalities

[25, 26], and even later in the ’90s when becomes relevant due to quantum teleportation [27] and

quantum computation with the Shor algorithm [28].

To measure Entanglement there are several correlation estimators, among which the Entanglement

of formation (Eof) stands out.

Entanglement of Formation

For a pure bipartite state |ψAB⟩, the Von Neumann entropy is used as a measure of Entanglement.

Ef (|ψAB⟩) = S(ρj) = −tr (ρj log (ρj)) (2.3.1)
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where ρj is the reduced density matrix of one of the parties of the total system. The index j = A,B

indicates that the Von Neumann entropy can be calculated with any of both density matrices of

the reduced system.

For a mixed state, the Eof is defined as the minimum Entanglement generated by the ensemble

{pi, |ψi⟩}

Ef (ρAB) = min
∑

piEf (|ψi⟩) (2.3.2)

where Ef (|ψi⟩) is defined by equation 2.3.1. To find the minimum of equation 2.3.2, we must

perform this calculation on different ensembles describing the same mixed state. This is achieved

by performing a purification process on the system. This purification process implies a problem of

optimization, for which the details will be aborded in the section of the same name below. The

optimization problem of Eof is not an easy task from the point of view of computational resources.

This highlights the importance of having analytical expressions. In this line, it is known in the

literature that closely related to Eof is concurrence.

Concurrence

Wootters developed a way to quantify Entanglement in an analytic manner for qubit systems [8],

for both pure and mixed states. For pure states, one can write the concurrence C as

C = 2| ⟨ψ∗|σy ⊗ σy |ψ⟩ | (2.3.3)

where |ψ∗⟩ is the conjugate state of |ψ⟩, and σy is the second Pauli matrix.

On the other hand, for a mixed state, one can write the concurrence as

C = max
(
0,
√
λ4 −

√
λ3 −

√
λ2 −

√
λ1

)
(2.3.4)

where λi are the eigenvalues of the matrix ρ (σy ⊗ σy)ρ
∗(σy ⊗ σy) in decreacing order. It should

be noted that this way of calculating concurrency requires the density matrix to have at least two

eigenvalues different from 0.

Both, for the mixed case and the pure case, the relationship between concurrency and the Eof is

given by replacing in the following expression the corresponding equation for concurrence

E(x) = x log2 x− (1− x)log2(1− x) (2.3.5)

x =
1

2
(1 +

√
1− C2) (2.3.6)

Unfortunately, there is no analytical result to calculate a figure of merit such as concurrency or

Entanglement in higher dimensions.
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Negativity

Since calculating Eof is an arduous task, other measures serve as upper/lower bounds for Entan-

glement. Negativity is a lower bound of Entanglement [29] and is related to Peres’ criterion of

separability [30]. In his work, Peres noted that if a bipartite separable state ρAB is partially trans-

posed -partially in the same sense as partially tracing-, then the partially transposed matrix ρTA/B

remains a physical state. In the same year it was shown [31] that this separability criterion is

sufficient only for low dimensions, such that the total dimension of the bipartite system is dAB ≤ 6,

i.e., 2 ⊗ 2 or 3 ⊗ 2 systems. This is how the violation of this criterion allows the detection of En-

tanglement. In the case of Negativity, it is related to the degree to which ρTA/B fails to be positive

[29]. Negativity is defined as

N =
||ρTB ||1 − 1

2
(2.3.7)

where the operation TB is the partial transposition of the party B of the total global density matrix

ρ. The operation ||(...)||1 means the sum of all negative eigenvalues of the partial transpose matrix.

In general, this quantity is notably easier to calculate than Eof, especially when working with higher

spins.

2.3.2 Quantum Discord

Although Entanglement was long thought to be the only type of quantum correlation existing in a

bipartite system, this was discarded due to the work of Olivier and Zurek [32], and independently

of Henderson and Vedral [33]. The work of these researchers focused on finding a quantum analog

of Mutual Information (MI), a concept of classical information theory. It was known that mutual

information can be measured by two equivalent expressions at the classical level,

I(A : B) = H(A) +H(B)−H(A,B)

J (A : B) = H(A)−H(A/B)
(2.3.8)

I(A : B) is the MI, which embodies all correlations of a system, and J (A : B) is the locally

accessible MI, as the latter depends on the local measurement of a part of the system. H(.) is the

Shannon entropy, H(A,B) is the joint entropy andH(A|B) is the conditional entropy. The quantum

analog of this classical entropy was materialized in the Von Neumann entropy S(ρ). However, in

order to take the conditional Shanon entropy into a quantum version, it was necessary to introduce

the concept of conditionality in a quantum way. In this sense, the quantum version of equation
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2.3.8 is

I(ρAB) = S(ρA) + S(ρB)− S(ρAB) (2.3.9)

J (ρAB) = S(ρA)− S(ρA|B) (2.3.10)

here S(ρA|B) is the entropy of the reduced state of A after a projective measurement has been

performed on subsystem B. The projective measures are carried out by a set of operators ΠB
k

acting only on subsystem B. The explicit form of writing the projected state is

ρkA|B =
1

pk

(
I⊗ΠB

k

)
ρAB

(
I⊗ΠB

k

)
(2.3.11)

where pk = Tr(I⊗ΠB
k ρAB I⊗ΠB

k ) is the probability of obtaining the outcome k. The conditional

entropy is

S(ρA|B) =
∑
k

pkS(ρA|{ΠB
k }) (2.3.12)

With the introduction of the measurement dependence to the equation 2.3.10, we have a quantity at

which we can maximize the classical correlations by choosing a basis that achieves this result; while

in the equation 2.3.9 we have all the classical and quantum correlations present in the system. By

taking the difference between these, we obtain a measure that exclusively encompasses correlations

of purely quantum origin, this is known as Quantum Discord (QD)

D = I − max
{Πk}

J

= S(ρB)− S(ρAB) + min
{Πk}

S(ρA|k)
(2.3.13)

QD has been demonstrated to be a useful tool in the study of correlations, not only in QPT but

also in thermal correlations [15, 16, 21] and therefore has been considered as a resource for quantum

computation when there is no Entanglement [34].

2.4 Optimization algorithm

In order to calculate Eof from equation 2.3.2, as well as to calculate QD in equation 2.3.13, it

is necessary to solve a convex roof problem. Based on the work in [35], we describe a numerical

method to solve this problem, which foundation is decomposing a unitary matrix.

For the first case of Eof, it is necessary to sample the possible pure-state decompositions of ρ. This

is carried out by a process called purification, which uses the idea that any mixed state can be

taken as a reduced system of a larger pure state. Denoting |ei⟩ the orthonormal set of vectors of

14



 
Figure 2.1: Summary diagram for optimization problem in quantum correlations. On the left
in panel a) the Quantum Discord calculation is shown, while in panel b) we have the process of
purification of a quantum state.

the environment, we can write the purification of the state in equation 2.2.18 as

|Φ⟩ =
N∑
i=1

√
pi |ψi⟩ |ei⟩ (2.4.1)

N is the number of pure states in equation 2.2.18. The dimension of the vector space of the

environment is not constrained to N since we can consider infinite contributions of pi>N = 0, so

we can vary arbitrarily the dimension of the purification space. The way of searching for different

purifications that result in the same reduced state ρ is achieved by rotating the subspace elements

of the environment through a unitary transformation,

U = I⊗ Ue (2.4.2)

and then tracing out the environment’s elements.

In the case of the calculation of QD, the same idea can be achieved. To find all possible projective

measures Πi we can perform unitary rotations in the subspace of B, obtaining new projective

measurements as follows

Π̃B
i = UBΠ

B
i U

†
B (2.4.3)

Understanding that both problems can be solved by generating this unitary matrix, now we have

to build it. It is known that a unitary matrix of dimension M ×M can be decomposed into the
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product of M(M−1)
2 unitary operations [22]

Uk,n =



1 0 ..

0 1

:
. . .

uk,n uk,k+n

. . .
. . .

uk+n,n uk+n,k+n

. . . :

1 0

.. 0 1



(2.4.4)

where k = 1, 2, · · · ,M − 1 and n = 1, 2, · · · ,M − k. Each unitary matrix Uk,n can be parametrized

in terms of three arbitrary parameters, such that

uk,k = A

uk+n,k = B

uk,k+n = B∗

uk+n,k+n = −A∗

(2.4.5)

where A = sin (ϕ1)e
iϕ2 and B = cos (ϕ1)e

iϕ3 . The total matrix Ue can be written as

Ue =

M−1∏
k=1

M−k∏
n=1

Uk,n (2.4.6)

the number of parameters on which a unitary matrix Ue acting on the extended space depends are
3M(M−1)

2 , belonging to [0, 2π].

In condensed matter, a minimization method is often used to simulate the annealing of a material,

which is then allowed to cool slowly; to repeat the process as necessary to remove impurities so

that the system reaches its state of minimum magnetic energy. This algorithm is called simulated

annealing (SA), and similarly to this process is where the parameterization of equation 2.4.5 is

framed, where the three angles are used as an analog to solve the orientation of a magnetic moment

in a two-dimensional space in condensed matter. In this manner, solving the minimization of the

convex roof problem is equal to finding the configuration of angles ϕ⃗ which minimizes the magnetic

energy. In this thesis, instead of using the SA algorithm, we have used the freely available resources

offered by Python. In particular, the library Scipy.optimize [36], which incorporates the basin-
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hopping algorithm [37], which finds a global minimization through a local minimization procedure.
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Chapter 3

DMRG

3.1 Summary

Numerical approximation techniques are necessary to solve problems in many areas of physics,

especially when there is no analytical solution. In particular, the study of one-dimensional chains

involves the tensor product of multiple Hilbert spaces, resulting in dimensions impossible to simulate

exactly for a classical computer if we want to model anything from a few tens of particles to near

the thermodynamic limit. Here comes the relevance of the Density Matrix Renormalization Group

(DMRG) algorithm [38], which nicely balances truncating the total Hilbert space of a spin chain

to an effective dimension achievable by a classical computer, without sacrificing good accuracy in

the results.

The key idea of the DMRG is to find a good basis representation to describe the system as its

length increases[39]. As will be seen later, this occurs via the reduced density matrix of the blocks

implementing an appropriate truncation of the Hilbert space.

This chapter describes the DMRG algorithm, both the infinite and finite cases..

3.2 Infinite system DMRG

Suppose we are searching for the ground state of a Hamiltonian of a general 1D chain. The

Hamiltonian is composed of sites interacting with their neighbors and each site lives in a Hilbert

space of dimension D. The Hamiltonian of the system can be written in a general way as

H =
∑
i

∑
q

(
J(q)Âi(q)B̂i+1(q) + g(q)V̂i

)
, (3.2.1)

where J(q) and g(q) are coupling constant, while {Âi(q)}q, {B̂i(q)}q and {V̂i(q)}q are sets of

operators acting on the i-th site. The q-index is used to reference the different elements of these
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sets [40].

In the majority of cases, the main objective of the infinite algorithm is to simulate a chain long

enough for quantities such as energy per site or the mean value of local operators to converge

without significant edge effects. However in our case, in addition, we can use the convergence

of quantum correlations which has been reported to be an important improvement of DMRG to

succeed in comparison with numerical renormalization [41].

The algorithm starts by defining a subsystem called block, composed of one site and the relevant

operators acting on it. In the literature, the block is often denoted as B(L,mkept) [40]; the arguments

refer to the number of sites L that contain and the number of states to describe it. Next, the

enlarged-block (EB) is formed by considering the interaction terms between the block and a free

site adjacent to the right. Because of the importance of the order in the tensor products is that the

previous EB is called Left enlarged-block (LEB). The Hamiltonian of the LEB can be read as

ĤLEB = ĤB + ĤS + ĤBS (3.2.2)

this Hamiltonian is composed of the Hamiltonians of the block ĤB , the site ĤS , and the interaction

between them ĤBS . It is important to remark that in the first step, the block Hamiltonian only

includes local terms. The operators that affect the LEB are also written enlarged, making the

tensor product between the identity matrix of the LEB and the operators of the block

ÂLEB = I⊗ Â (3.2.3)

The next step is to form the superblock, by considering the interaction between the LEB with the

Right enlarged-block (REB). The REB is a structure similar to the LEB, except the block is now

on the right and the free site is adjacent to its left side. The Hamiltonian of the superblock is

ĤSB = ĤLEB + ĤREB + ĤLR (3.2.4)

here we have the Hamiltonians of each EB and their interaction ĤLR. This super Hamiltonian

describes the total B(L,mkept)-site-site-B(L,mkept) system. At this point, we can obtain the ground

state |Φ0⟩, by diagonalizing equation 3.2.4; and use it to construct the density matrix of the chain,

as indicated in equation 2.2.10

ρ = |Φ0⟩ ⟨Φ0| (3.2.5)

next step is to obtain the reduced density matrix of the LEB (REB),

ρLEB = trREB (|Φ0⟩ ⟨Φ0|) (3.2.6)
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Figure 3.1: Eigenvalue spectrum of the reduced density matrix of a block for the case (∆, D) =
(0.15,−2) m = 26 and 1500 sites. On the y-axis, we have the eigenvalues with the highest value,
while on the x-axis they are ordered in decreasing order.

at this point, it is necessary to employ the (pre-fixed) number m of states to truncate the Hilbert

space. The dimension of the enlarged block dEB = Ddblock is compared with this number

mkept = min(dEB ,m) (3.2.7)

and the minimum value between those is chosen to select the most relevant mkept eigenstates of the

reduced density matrix of the LEB (REB). The most relevant eigenstates are the ones with larger

amplitude, and are used to construct the matrix of change of basis OL (OR), such that the new

block Hamiltonian is written in the new representation of "absorbing" a central cite,

Ĥ
′

LEB = O†
L ĤLEB OL (3.2.8)

and similarly, other block operators are renormalized

Â
′

LEB = O†
L ÂLEB OL

finally, the new LEB (REB) and block operators are renamed for the algorithm to repeat by adding

two central sites between the renormalized EBs. The process is repeated until the system reaches

a certain size or the precision of the results is under a specified tolerance.

The number of fixed states m must be at least greater than the dimension of one site D and

should also be selected so that the algorithm yields good results. To achieve good results we may
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Figure 3.2: Schematic process of DMRG algorithm [40]. On subpanel a) one iteration of the infinite
process is shown. On the left panel b), is illustrated one sweep in the finite algorithm.

look at the truncation error, that is, the error made for discarding all eigenvalues besides the m

more relevant,

ϵtr =
∑
i>m

λi (3.2.9)

where λi are the eigenvalues of the reduced density matrix of the EB in decreasing order. The

equation 3.2.9 can be rewritten considering the property that the trace of the density matrix adds

to one

ϵtr = 1−
m∑
λi (3.2.10)

This approximation is good when the eigenvalues of the reduced density matrix of one of the EB

decrease quickly, such that it is distinguishable the main contribution of the eigenstates αk with

larger eigenvalues in comparison with the eigenstates with eigenvalues closer to zero, as shown in

figure 3.1. In this case, one can choose a number that keeps the quickly decreasing behavior of

these eigenvalues, if there is such behavior.

The summarized steps of the infinite DMRG algorithm, illustrated in panel a) of figure 3.2, are

outlined below:

1. Build the operator matrices for a single site Hamiltonian, and the operators involved in the

interaction terms between this site and the rest of the system. With this, we form the initial

blocks denoted as B(1,D).
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2. Grow each block with one site to form the LEB and REB. Also, write the interaction operators

in the enlarged form.

3. Construct the superblock, find the ground state, and build the density matrix of the chain.

4. Obtain the reduced density matrix for each EB. Compare the EB dimension with m and

evaluate if truncation is needed according to equation 3.2.7. Then obtain these most relevant

eigenstates of the reduced density matrices and form the matrices OL and OR

5. Renormalized all relevant operators to go from B(L,mkept) to new blocks B(L+1,mkept) and

repeat the process from step 2.

An important comment to make is related to the diagonalization process. At the first steps the

system is small enough to perform exact diagonalization, but as the size increment until truncation

is needed, one may prefer to use a more optimal method, especially considering that only one

eigenstate is required, the ground state. That is the reason is highly suggested to accomplish this

task with a library routine, such as Lanczos or Davidson algorithm. [39]

3.3 Finite system DMRG

Despite the fact that the infinite method obtains good results in general, there are cases where the

required accuracy will not be obtained, for example, if there are impurities in the Hamiltonian or

there is a very large magnetic field that traps the system in a metastable state in the first steps of

DMRG when the edge effects are not negligible [39, 40]. The finite method solves these problems

by means of so-called sweeps. Although we will not use this method in this thesis, we consider it

valuable to mention the main idea.

The algorithm starts with a warm-up process, using the infinite DMRG algorithm until a maxi-

mum superblock size Lmax is reached. This length is preserved constant. After that, one block

B(Lmax/2 − 1,m) increases its size absorbing one central site forming the block B(Lmax/2,m),

while the other block releases a site and shorts its length as B(Lmax

2 − 2,m), such that two central

sites are always maintained between the blocks. The block that is enlarged, remains increasing its

size until the block that is shortened contains only one site B(1, D), and then the process is carried

out inversely, extending the block until the other block contains only one site. This process is called

sweeping and is responsible for obtaining the convergence of the results. A scheme of this step is

on part b) of the figure 3.2.
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Chapter 4

Quantum phase transitions in spin

chains

4.1 Summary

Spin chains are interesting systems for understanding many-body physics, because they represent

an initial approximation to the many-body problem, without losing the relative simplicity of a

one-dimensional model. In this chapter, we will present the concept of quantum phase transition

(QPT) and the classification criteria according to the traditional view, and the correspondence

with the quantum correlation perspective. In this chapter, the basic aspects of spin algebra will be

introduced. Then, a short review of the spin 1
2 models known in the literature and their QPTs will

be made, to finally address the spin 1 model on which this work is focused.

4.2 What is a quantum phase transition

To define what a quantum phase transition is, we will go back to defining what a phase is and how

one can move from one phase to another. To address this problem, let us start by talking about

many-body physics. The great thing about many-body physics lies not so much in the number

of bodies being studied but in the interactions between them. It is well-known how to solve an

isolated particle problem, considering a collection of these would be the same as solving N times

the same problem. The interactions between a large collection of particles result in states of matter

with measurable and distinguishable properties at the macroscopic level. In statistical mechanics,

the main purpose is to write the partition function of a system. This is related to the free energy,

which at the same time is related to the thermodynamic quantities of the system by the orders of

derivatives in the energy with respect to some parameter of the Hamiltonian describing the system.
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We call the state of a many-body system with well-defined physical quantities a phase [42]. When

there is a phase transition, some physical properties of the system change to new ones, and is

common to use a distinctive property as an order parameter to characterize the phase transition.

This change is associated with a singular behavior in energy [1, 2]. Since for a finite set of particles,

the energy is always continuous, we have to speak of non-analytic behavior in the energy only in the

thermodynamic limit. In other words, a phase transition occurs only in a system where the number

of particles tends to infinity. As to how a phase transition occurs, it is simply obtained by varying

a parameter of control that affects the system until it reaches a point close to a transition, where

fluctuations at the microscopic level become relevant. Commonly, phase transitions are usually

caused by variations in temperature, such as boiling a kettle or cooling a ferromagnetic material.

However, when we talk about a quantum phase transition, temperature ceases to play a relevant

role since QPTs occur at zero temperature. This implies two things, first, that the system is in

its ground state, and second, that quantum fluctuations are responsible for the QPT rather than

thermal fluctuations.

4.2.1 Classification criteria

Although the types of phase transitions are varied, in this thesis work we will limit ourselves to

those related to non-analytic behavior at some order of the ground state energy derivatives. Thus,

a first-order QPT (1QPT) is related to a discontinuity in the first derivative of the ground state

energy. Similarly, a second-order QPT (2QPT) is related to a discontinuity or divergence in the

second derivative of the ground state energy.

The names of these classifications come from historical reasons linked to Ehrenfest’s classification.

Even though this classification contained an error, formally nowadays 1QPT are generally defined as

those transitions where there is associated latent heat, and 2QPT or continuous phase transitions,

as they are called since the error in the old classification has been corrected, are characterized

by exhibiting a critical behavior near a transition point, where a decay power law governs the

correlations, the correlation length is infinite and hence the susceptibility diverges.

Despite the usual classification through energy, the link between QPTs and Quantum information

theory allows us to take advantage of a correspondence between the traditional classification and

the quantum correlations present in the ground state. In this way, Wu, Sarandy, and Lidar [43]

demonstrate that for Entanglement measures, a discontinuity in a correlation estimator indicates

a 1QPT, while a discontinuity or divergence in the first derivative of the correlation estimator

indicates a 2QPT. The latter has also proven true for QD in the Dillenschneider paper [13], and

other articles where QD has spotlighted QPT [15–17]. In [17], Malvezzi detects a 2QPT as an

inflection point in QD in the spin 1 Heisenberg model.
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4.3 Spin algebra

To define the algebra of any spin Ŝ = (Sx, Sy, Sz), 2 elements are needed [44]. Firstly, the commu-

tation relation between its components

[Sα, Sβ ] = iϵαβγS
γ (4.3.1)

and second, the realization of the operators on an orthonormal basis. The spin operators act on a

Hilbert space of dimension 2S+1, which we denote {|ψm⟩},

Sz |ψm⟩ = m |ψm⟩

S± |ψm⟩ =
√
S(S + 1)−m(m± 1)

∣∣ψm±1
〉 (4.3.2)

We assume Ŝ2 = S(S + 1)I, where S is the spin number. This number can take integer or half-

integer values of the form n/2, with n = 1, 2, 3, .... For m, this value goes from −S to S, changing

by one unit at a time, or in another equivalent representation, from 0 to 2S, whether is used the

traditional way or the computational basis to write {|ψm⟩}.

The basis has a vector representation, traditionally chosen to be the eigenstates of SZ . The basis

state can be written as a column vector full of zeros, except for one entry with a value of one. In

this work, we will use the computational basis states [31]. For determining the vectorial form, the

index of the row that contains the 1 will be the same which indicates the value of m, starting from

0 to the position 2S.

|ψm⟩ =



0

0

...

1

0

...

0


(4.3.3)

For the case of spin 1
2 , the eigenstates of Sz and spin operators are

Sx =
1

2

0 1

1 0

 , Sy =
i

2

0 −1

1 0

 , Sz =
1

2

1 0

0 −1

 (4.3.4)

|0⟩ =

1

0

 |1⟩ =

0

1

 (4.3.5)
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It should be noted that for 1
2 the spin operators can be represented in terms of Pauli matrices as

σα = 2Sα, α = x, y, z

For the case of spin 1, the eigenstates of Sz and spin operators are

Sx =
1√
2


0 1 0

1 0 1

0 1 0

 , Sy =
i√
2


0 −1 0

1 0 −1

0 1 0

 , Sz =


1 0 0

0 0 0

0 0 −1

 (4.3.6)

|0⟩ =


1

0

0

 |1⟩ =


0

1

0

 |2⟩ =


0

0

1

 (4.3.7)

These matrix and base representations will be used throughout the thesis.

4.4 Spin 1/2

4.4.1 Transverse XY and Ising models

The Hamiltonian of the anisotropic XY model consists of an N 1
2 -spin chain with nearest neighbor

interaction immersed in an external magnetic field, given by

H = −
N∑
i

(
J(

(1 + γ)

2
σx
i σ

x
i+1 +

(1− γ)

2
σy
i σ

y
i+1) + hσz

i

)
(4.4.1)

where σα, α = x, y, z are the Pauli matrices, J is the exchange interaction parameter, h is the

intensity of the magnetic field and γ is the amount of anisotropy in the spin-spin interaction

restricted at the xy-plane. Here |γ| < 1. Defining the dimensional coupling constant λ = J
2h is

convenient.

This model encompasses two other well-known models [45]. When γ = 1, the equation 4.4.4 becomes

the Hamiltonian for the transverse field Ising model

H = −
N∑
i

(Jσx
i σ

x
i+1 + hσz

i ) (4.4.2)

this model is the subject of a 2QPT for a critical magnetic field value at hc = 1. The system is

in a ferromagnetic ordered phase with magnetization ⟨σx⟩ ̸= 0 for h < hc, and in a paramagnetic

disordered phase with ⟨σx⟩ = 0 for h > hc. Moreover, for the interval 0 < γ ≤ 1 in equation 4.4.4,

the model belongs to the Ising universality class and undergoes the same 2QPT for hc [45, 46].
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When γ = 0, the equation 4.4.4 becomes the Hamiltonian for the isotropic transverse XY model

H = −
N∑
i

(
J(

1

2
σx
i σ

x
i+1 +

1

2
σy
i σ

y
i+1) + hσz

i

)
(4.4.3)

this model also has a QPT called anisotropic transition, which divides the regime where γ > 0 where

the magnetization is in the x-axis, from γ < 0, where the magnetization is in the y-axis. For the

case of γ = 0 and h = hc, there is no ferro-paramagnetic transition, but instead an insulator-metal

-like 2QPT exists with no symmetry order parameter. This is called a Lifshitz transition [46].

This model has an analytical solution using the Jordan-Wigner transform [47], which is a trans-

formation that maps the spin system to a fermion system. This transformation was applied to the

XY model in the paper by Lieb et al. [48].

4.4.2 XXZ Heisenberg model

The Hamiltonian for the XXZ Heisenberg model consists of an N 1
2 -spin chain with nearest neighbor

interaction in the 3 directions x,y,z

H = −
N∑
i

(
Sx
i S

x
i+1 + Sy

i S
y
i+1 +∆Sz

i S
z
i+1

)
(4.4.4)

where Sα, α = x, y, z are the spin operators, related to Pauli matrices as σα = 2Sα as stated

in section 4.3. The anisotropy parameter in the z spin-spin interaction is ∆. This model has 2

critical points, for ∆c1 = −1 where a 1QT take place, and ∆c2 = 1 where the system undergoes

a 2QPT. The system is in the ferromagnetic Ising phase for the range ∆ < ∆c1. In the interval

∆c1 < ∆ < ∆c2 the system is in the XY phase, and finally for ∆ > ∆c2, the system is in the Néel

or antiferromagnetic phase [45]. The analytical solution for the antiferromagnetic case was given

for Bethe, with the Bethe ansatz [49].

4.5 Spin 1

4.5.1 XXZ Heisenberg model with single-ion anisotropy

The Hamiltonian that describes the one-dimensional spin 1 Heisenberg model with uniaxial single-

ion anisotropy is

H =

N∑
i

{(
Ŝx
i Ŝ

x
i+1 + Ŝy

i Ŝ
y
i+1 +∆Ŝz

i Ŝ
z
i+1

)
+D

(
Ŝz
i

)2}
(4.5.1)
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Figure 4.1: Phase diagram of S1 XXZ model with single-ion anisotropy, equation 4.5.1. Figure
taken from Chen et al. [50].

where N is the total number of sites, Ŝα
i are spin 1 operators from section 4.3. The parameter ∆

characterizes the anisotropy between the spin exchange interaction in the z-axis of the system, and

D is the uniaxial single-ion anisotropy.

For the case of D = 0, we recover the S-1 XXZ Heisenberg model. The phases through which

this model is divided are well established [51, 52], the first critical point ∆c1 = −1 divides the

ferromagnetic phase (left) from the XY phase (right) through a 1QPT, see figure 4.1 for D = 0.

The second transition point at ∆c2 ≈ 0 divides de XY phase from the Haldane phase through a

Berezinskii–Kosterlitz–Thouless (BKT) transition. This transition is of infinite order, i.e., it does

not imply a discontinuity in any order of the ground state derivative, nor is related to a broken

symmetry, evenmore is a topological phase transition. This phase extends until the third critical

point ∆c3 ≈ 1.185, which signals the 2QPT from the Haldane phase to the Néel phase. It is impor-

tant to remark that ∆c2 and ∆c3 have been consensual through numerical results [52]. A relevant

feature of this model is that it has a symmetry point SU(2) at ∆ = 1 where the model is isotropic.

Although this model already exhibits greater richness as a higher spin model compared to the spin

1/2 models, by adding a uniaxial anisotropy term D, we obtain an even more complex and abundant

phase diagram, see figure 4.1, because, in addition to the phases above mentioned, we add a new

one, the large-D phase.
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The new phase transitions from the single-ion anisotropy term are the Haldane-Large-D topológ-

ical phase transition and the infinite order BKT transition between the XY-Large-D phases. The

ferromagnetic to Large-D 1QPT transition and the Large-D to Néel transition, which nature is still

unknown, although it is believed to be a 1QPT [50, 53].

Concerning order parameters, both the ferromagnetic and Néel phases have magnetic order. In the

ferromagnetic phase, all the spins point in the same direction, this evidenced by the spin-spin cor-

relation ⟨Sz
i S

z
i+1⟩, while in the Néel phase, all the nearest-neighbor spins are aligned in the opposite

direction. This is characterized by the Néel order parameter (−1)n⟨Sz
i S

z
i+1⟩. On the other hand,

the Haldane phase has a non-local topological string order parameter −⟨Sz
i e

iπ
∑j−1

k=i+1 Sz
j Sz

j ⟩[53].
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Chapter 5

Results

5.1 Summary

In this chapter, we present the results obtained in this thesis. The approach we implemented to

study QPTs in the spin-1 chain is essentially numerical. As we have mentioned in the preceding

chapters, DMRG method is the appropriate method to study the fundamental state of this system.

On the other hand, quantum correlations as an estimator of QPTs must be calculated appealing

to an optimization calculation. In the first instance, we will present calculations of some previ-

ous results found in the literature, and some new results concerning the calculation of quantum

correlations in high-dimensional systems. Among the results we present the calculation of QD for

an incoherent superposition of maximally entangled states in dimensions 2, 3, and 4, and also the

calculation of QD for a two-qutrit system at finite temperature. Finally, we will show in detail

calculations of quantum correlations in spin chains. In particular in those systems described in

chapter 4.

5.2 Optimization results

Within the quantum world, there exists a zoology of relevant states such as Bell states, usually

known as EPR states. These states play an essential role in the development of quantum theory

since the crucial work by Einstein, Podolsky, and Rosen [24], where fundamental issues such as the

nonlocal nature of quantum mechanics were questioned. Bell states embody the essential ingredient

of quantum correlations since they exhibit maximal entanglement and maximal quantum discord.
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Bell states for a couple of qubits (spin 1
2 ) can be conveniently written as

|Φ±⟩ =
1√
2
(|00⟩ ± |11⟩)

|Ψ±⟩ =
1√
2
(|01⟩ ± |10⟩)

(5.2.1)

Bell states can be generated using the Hadamard and CNOT gates for qubits. Although famous,

these are not the only maximally entangled states. We can use the same protocol used for qubits

to produce maximally entangled states in higher dimensions. It should be noted the process for

generating entanglement in principle depends on the quantum discrete Fourier transform and a

conditional operation. For the case of qubits, the quantum discrete Fourier transform returns the

Hadamard gate. The conditional operation, in our case defined as a function of the modular addi-

tion, yields the CNOT gate. The details of this procedure and calculation of maximally entangled

states for qubits and higher dimensional systems are discussed in the appendix A.1.
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Figure 5.1: Quantum Discord computed for an incoherent superposition of maximally entangled
states, for the cases of dimension 2, 3, and 4.

To test the performance of our optimization algorithm, we consider incoherent superpositions

between two maximally entangled states for qubit, qutrits, and quatrits. The number of states for

each case is d2, with d = 2 for qubits, d = 3 for qutrits, and d = 4 for quatrits. Let us choose a

particular incoherent superposition as follows

ρd = p
∣∣vd〉 〈vd∣∣+ (1− p)

∣∣vd⊥〉 〈vd⊥∣∣ (5.2.2)

where p plays the role of the mixing probability, varying in the interval [0, 1], {
∣∣vd〉} are the
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maximally entangled states for dimension d. Intuitively this kind of state should exhibit minimal

correlations for a balanced superposition, where the mixture is equal.

To study the quantum correlations of these systems, we calculate the QD for ρ2, ρ3 y ρ4. For each

case, the logarithms in entropies at the calculation of QD were normalized to the corresponding

dimension d of the system, so the maximum value of QD is one for each curve. Observing the

figure 5.1, it is evident that quantum correlations are symmetric for p = 0.5, where the minimum

of quantum correlation is localized, as we thought for a balanced incoherent superposition. Par-

ticularly for the case of qubits, we notice that when the superposition is balanced the minimum

of QD is zero, which does not occur when we perform the superpositions for higher dimensions.

Notably, the minimum value of QD grows as the dimension of the system under study increases.

Another thing to note is that the curves have the same behavior in the extreme cases where p = 0

or p = 1, producing the maximum correlation in both cases, which is trivially explained by having

just one of the two maximally quantum correlated states that conform ρd, with maximal QD. It is

also important to say the general behavior of the curves in figure 5.1 does not change depending

on which states
∣∣vd〉 and

∣∣vd⊥〉 we choose to superpose. We should mention that, when writing this

thesis, we were unaware these results had been studied in the literature.
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Figure 5.2: Quantum Discord computed for finite temperatures in a bipartite qutrit system, in
function of an external magnetic field.

Moving to the second result used to test the performance of the optimization algorithm, in

figure 5.2 we were able to reproduce some results obtained in the article by Hou et al. [54]. In

that work, they focused on studying the quantum correlations of a two-qutrit system with exchange
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interaction J in the presence of a magnetic field B at finite temperatures

H = J(S1xS2x + S1yS2y) +B(S1zS2z) (5.2.3)

In the paper, they first obtained the eigenstates {|ψi⟩} and eigenvectors Ei of the Hamiltonian

written above. Then, they wrote the state in thermal equilibrium according to the canonical

ensemble

ρeq =
1

Z
∑
i

e
E0−Ei
kBT |ψi⟩ ⟨ψi| (5.2.4)

where Z is the partition function. We performed the correlation calculations with the explicit

form of ρeq. Again, in the computation of QD, the logarithms in entropies were normalized to

d = 3, which explains the difference at scale in the y-axis in figure 5.2 compared with the original

paper where the calculations were made in qubit base. Also, J and kB were set to 1 during the

calculation.

As a result, the QD was obtained as a function of the magnetic field at a finite temperature.

Observing figure 5.2, in the temperature range T = 0.01 − 0.06 there is a sharp change in QD at

B ≈ 4. At that point, in the limit T → 0, the system has three different ground states, which

would indicate signs of a QPT if the thermodynamic limit of the system were considered. For the

case of T = 0.3, we observe fewer quantum correlations and the curve decays smoothly unlike the

previous cases. We can also see that there is a maximum value of the magnetic field that can be

applied before QD decays to 0 and this value increases with temperature.

In both cases studied we found satisfactory results to rely on our optimization algorithm. We

advanced the results to estimate the QPTs in spin chains.

5.3 DMRG results

The process of applying the algorithm to spin chains is exemplified in the appendix B.1, where it is

used in the principal model studied in this thesis, the Hamiltonian of the XXZ Heisenberg model

with a single-ion anisotropy, described by the equation 4.5.1.

Among all the figures of merit studied in the chapter 2 to quantify the quantum correlations of

various systems, we were faced with discriminating between them when studying the applicability

to different models. Since exists a Concurrence relation for qubits, we directly used that relation

instead of performing an unnecessary optimization process for calculating entanglement. For spin-1

the number of parameters to be optimized in the Eof case amounted to 108, considering M = 9

and the number of parameters 3M(M−1)
2 , as mentioned in chapter 2. Because of the expense of this

optimization process, we decided to discard using Eof to characterize the QPTs of the spin-1 XXZ

model with single-ion anisotropy, and instead rely on negativity when necessary.
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On the other hand, at the QD calculation level, we had to decide when to calculate it depending on

the particular model we were dealing with, specifically talking about spin-1/2 chains. Some systems

demanded a higher amount of computational resources than others, even though they are systems

of dimension 2, which was mentioned in chapter 3 as a consequence of the growth of entanglement.

This was the case for the spin-1/2 XXZ model. So, in honor of time, we only calculated the QD

of some of them. Fortunately for the spin-1 case, the optimization of the QD calculation could be

performed pleasingly, with a parameter space of dimension 3×3×(3−1)
2 = 9. Thus, this correlation

estimator was the bastion to calculate the phase diagram of our spin-1 system.

To ensure the reliability of our results, we use the truncation error and the convergence of the

quantum correlations at the critical points, where these quantities become smaller the farther from

a QPT. The first was given in chapter ??, and we also averaged this quantity for the last 100 sites

in order to obtain a mean value as a representation of the total truncation error for the simulation.

And the second is based on examining the convergence of Concurrence per site (computed at each

DMRG step increasing the size of the chain) in the spin-1/2 case, or the convergence of "naive

Concurrence" per site in the spin-1 case. The latter naive estimator is explained in the spin-1

results section. With these general comments clarified, we proceed to present the spin 1/2 results.

5.3.1 Spin 1/2

Considering the case-by-case of each model, the parameters used to perform the simulation of a

spin chain by DMRG, such as the number of sites L or the number of eigenstates kept m vary for

each one, mainly taking care to maintain a low truncation error and to ensure the convergence of

the quantum correlations.

For the first figure 5.3 the Concurrence obtained for the Ising model in a transverse field is ob-

served, in agreement with the results obtained by Osenda, et al [55]. For this model, a chain with

L = 1000 sites and m = 14 was simulated. In all spin-1/2 chains, we set h = 1 and varied J, such

that in the dimensional coupling λ, the critical point translates into λc = 0.5. The truncation error

is of the order 10−8 and the convergence of the Concurrence per site is of the order of 10−6. In

this case, the peak of quantum correlation is not related to a QPT, but the change of concavity

observed at the critical point λc = 0.5 evidence the occurrence of a 2QPT, which is supported by

the second derivative of the energy per site in figure 5.4. For the calculation of QD, the result is

still pending because of the obstacle of being a quantity that requires greater precision compared

to the Concurrence in this case around the 2QPT.
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Figure 5.3: Concurrence calculated for the TFIM. The transition point is located at λc = 0.5. The
maximum in the correlation does not relate quit the QPT. The curve was simulated with L = 1000
sites and m = 14 states of truncation.
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Figure 5.4: Second derivative of the energy per site in the TFIM. This figure shows the evidence
of a 2QPT en λc = 0.5.

In the case of the transverse XY model, the spin chain was simulated with L = 1000 sites and

m = 16. The truncation error is of the order 10−9 and the convergence of the Concurrence per site

is of the order of 10−6. We can observe the Concurrence of this model in figure 5.5, which is also

consistent with the results of Osenda et al [55]. The 1QPT of the model can be pointed out in the

abrupt discontinuity in the quantum correlation at λc = 0.5, dividing the two phases present in the

model. For the case of QD in figure 5.3, we observe it also indicates the QPT at λc, following the

same tendency as the Concurrence.
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Figure 5.5: Concurrence for the isotropic XY transversal model. The transition point for the 1QPT
is located at λc = 0.5. The curve was simulated with L = 1000 sites an m = 16 states of truncation

Figure 5.6: Quantum discord for the isotropic XY transversal model. It signals de transition point
at λc = 0.5.

Finally, we have the Concurrence for the Heisenberg XXZ spin 1/2 model in figure 5.7. Unlike

Ising’s model, here the 2QPT coincides with the correlation maximum at ∆c = 1, and on the other

hand, the 1QPT is evident at the discontinuity when ∆c = −1. For this model, we divided de

computation into two parts due to the demanding convergence. The first part was simulated with

L = 2000 and m = 14 in the range ∆ ∈ [−1.8, 0), where the truncation error is of the order of 10−9

and the convergence of Concurrence per site is of the order of 10−6.
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Figure 5.7: Concurrence for the XXZ model. This model has two transition points, one is located
at ∆ = −1, with a 1QPT. And the second point is located at the maximum value of correlation,
∆ = 1, where a 2QPT occurs. The curve was simulated in parts, due to convergence difficulties.

The second and most difficult part was simulated with L = 10000 sites and m = 16 in the

range ∆ ∈ [0, 4]. Even with these parameters, the sector between ∆ ∈≈ [0.7, 1.2] failed to converge

to a satisfactory order. Given this, to obtain the curve in the figure 5.7 we use the fact that

the convergence of the Concurrence per site oscillates between two values, which in the optimal

case are shortening in distance from each other until we reach approximately the averaged value.

We calculate this average by hand and replace it in the Concurrence as the final value. The

optimal choice would be to provide more Hilbert space and sites to converge the simulation, but

for time constraints we chose this qualitative approach that managed to show this 2QPT, as can

be contrasted in the paper of Dillenschneider [13]. Since the mean value of the Concurrence does

not change the lack of convergence in the density matrices of the central sites, we cannot calculate

the QD of this model until we obtain the converged simulation with the correct parameters.

The computed quantum correlations correctly replicate the literature results, pointing out the QPTs

of these spin chains. This allows us to ensure the reliability of our DMRG algorithm for studying

QPTs in higher dimensions. Even for the case of the spin 1/2 XXZ model, we can ensure this since

the motive for the no convergence in the difficult range is a resource issue rather than an error in

the DMRG algorithm issue.

5.3.2 Spin 1

We finally present the main result of this work. The QPTs for the spin-1 XXZ Heisenberg model

with single-ion anisotropy, that we studied numerically using QD as the principal estimator, and

Negativity to compare in particular cases. The parameters to perform the simulation in different

intervals of (∆, D) had to be chosen after initial trials where the truncation error, the accuracy of
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the energy per site, and the convergence of the quantum correlations were ensured. In general, all

phase transition curves were calculated using QD, and only in some distinct cases were compared

with negativity. An essential point for the numerical work was to use a naive correlation estimator

to study the convergence of quantum correlations. As we explained in chapter 2, there is no analyt-

ical expression for Concurrence or Eof in dimensions higher than qubits, and optimizing 108 angles

for each trial and error until we found the pair (L,m) that minimized the truncation error was

out of the question. However, in an occurrence prompted by curiosity and necessity, the Wooters’

Concurrence expression with spin 1 operators was used to calculate this naive analog of Concur-

rence in a higher dimension, such that it would serve as a guide to evaluate the convergence of the

quantum correlations and facilitate finding the (L,m) parameters for which the data were reliable.

This method in no way counts as proof of a generalization to higher dimensions of Concurrence.

However, it is neither silly nor entirely wrong to calculate this quantity, since it is related to the

observable Sy and hence has to carry some information. So, recognizing its naive character, this

method was used to ensure the convergence of the quantum correlations.
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Figure 5.8: Quantum discord versus the anisotropy parameter ∆ in the spin-1 XXZ model. From
left to right, the first discontinuity signals a 1QPT at ∆ = −1. The peak is not a QPT, but a
symmetry point. At the light orange is demarked the 2QPT around ∆c ≈ 1.18.

First, we present the result with D = 0, where the general model reduces to the spin-1 Heisen-

berg XXZ system. For this case, we managed to reproduce the result of the work of Malvezzi,

et al. [17] by finding the QD curve in the interval of ∆ ∈ [−1.5, 1.5]. For this particular curve,

the QD was calculated by intervals, and with the entropies in qubit basis. The sections are 3,

∆ ∈ [−1.50,−1.01], ∆ ∈ [−0.99, 0.49] and ∆ ∈ [0.5, 1.5]. In the first interval, the data was obtained
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with L = 500 and m = 14. In the second, the parameters of the simulation were L = 100 and

m = 16, and the final interval was simulated with L = 100 and m = 24. The difference between

these parameters is explained by understanding that there are zones within the same curve where

the simulation converges quickly compared to the others. The latter is a zone of difficult conver-

gence of quantum correlations, which requires a greater balance with respect to Hilbert space to

truncate in the DMRG algorithm. Sometimes, like this one, increasing the Hilbert space consid-

erably helps to the point of not having to simulate such a long chain. In principle, it would be

ideal to let the DMRG algorithm automatically regulate itself in terms of L and m, just delivering

the desired tolerance and letting the program run until the output condition is met. However, this

approach has the disadvantage of being very expensive for the computer, and also that if there

is any point of high entanglement there may be no convergence at a high tolerance, and must be

addressed in another way, such as with finite DMRG.
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Figure 5.9: Numerical phase diagram of the S-1 XXZ Heisenberg model with single-ion anisotropy,
constructed with Quantum Discord for the ferromagnetic (white dots) and Néel (red dots) curve
transition, in addition, there is a line characterizing the symmetry point of (∆, D) = (1, 0) (diamond
markers) as D varies.

We can observe from the figure 5.8 that the 1QPT from ferro to XY phase is clearly observed
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at ∆c = −1, and the same is true for the 2QPT evidenced by the change of concavity around

∆c = 1.18. The symmetry point at ∆ = 1 is also visible. For the case of the BKT transition at

∆ ≈ 0, there is no indication in the QD that could point to this phase transition. This is in line

with what was mentioned in chapter 4, where the infinite order character of this transition was

mentioned, plus the fact the order parameter for the Haldane phase is non-local.

Turning to results with D ̸= 0, we focus on finding the first- and second-order phase transitions,

since as mentioned above, QPT outside the traditional classification must be addressed with differ-

ent tools. In particular, for topological QPT between the Haldane and Large-D phases, we believe

that we must extend our study to next-neighbor correlations at least since the local character of

the quantum correlations we study in this work does not allow us to approach this type of spe-

cial transition. In this way, we manage to reproduce the ferromagnetic and antiferromagnetic or

Néel transition curves, plus a novel curve characterizing the change of the symmetry point (SP)

at (∆, D) = (1, 0) as D is varied. The general diagram was introduced in chapter 4, and we can

contrast it with our result in figure 5.9.
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Figure 5.10: Close up of Quantum discord for the symmetry point (peaks) and 2QPT sector, as
the single-ion anisotropy D term is varied. The case (∆, D) = (1, 0) is illustrated at the pink curve.
The ∆ coordinate of the peaks for each curve is taken and represents the blue curve with diamond
markers in figure 5.9.

In the case of the ferromagnetic curve, for the simulation of the chain in the DMRG algorithm,

we use L = 1500 sites and m = 18 eigenstates, with the only difference being the case for D = 0,

where the data have already been mentioned above. The convergence for the energy per site for

this curve ranges between 10−7 − 10−8, while the correlation of the naive Concurrence varies for

each point between 10−5 − 10−9. The error associated with the truncation process it is shown in

table 5.1, where they are displayed on a scale of 10−6.
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In the case of the Néel curve, it was necessary to simulate some sectors more accurately than others.

For D ∈ [4, 3] we used (m,L) = (18, 1500), while for D ∈ [2.7, 0.1] we used (m,L) = (18, 3500). Fi-

nally for D ∈ [−0.1,−1.5] we use (m,L) = (18, 1500), and in particular for D = −2 the parameters

were (m,L) = (26, 1500). The convergence of the energy in all the cases just mentioned, both for

the SP and the QPT curves, is of the order of 10−8, and for the convergence of the naive Concur-

rence it ranges between 10−7 − 10−9 in the SP, while for the QPT it ranges between 10−6 − 10−9.

In particular at D = −2 for the SP curve, the convergence of the naive Concurrence is of the order

of 10−5. Regarding the truncation error, in table 5.2 we can see it on a scale of 10−5.
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Figure 5.11: Quantum discord for the cases of D = 2, 3, 3.5. For D = 2 in the region ∆ > 0 we
are in the region where there is still a 2QPT, unlike the other two values, where the Néel-Large-D
transition occurs. At the left, where ∆ < 0 it can be observed the 1QPT of each curve.

In order to understand the phase diagram in figure 5.9, we found it relevant to have some curves

that maintain a full extension in ∆ to cover the two QPTs. Thus in figure 5.10 we can observe

the change in the peak of the symmetry point as D varies. In figures 5.11 and 5.12 we can see the

behavior of the QD and Negativity for the cases D = 2, 3, 3.5. It is clear to notice that the ferro-

magnetic 1QPT is distinguished as a discontinuity in both correlation estimators. While for the

Néel phase curve, for D = 3, 3.5 we have a sharp change in QD, but for Negativity a discontinuity

in the function becomes present. For D = 2 we observe a smooth behavior of change in Negativity,

while for QD it is difficult to distinguish at first glance a concavity change in the figure, but it is
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known to be there thanks to calculations and can be better contemplated in the figure 5.10. This

supports the evidence for a 2QPT.
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Figure 5.12: Negativity for the cases od D = 2, 3, 3.5. We can observe in the ferromagnetic region
that Negativity exhibits a discontinuity where the 1QPT is located. In the other extreme, for D = 2
we have a smooth behavior in comparison with the discontinuities presented for the other cases.
This is consistent with what is shown in figure ??.

For comparison, we have also calculated the energy per site for these cases, and also for the

D = 0.5, 1 cases, see figure 5.13. In particular for the antiferromagnetic curve at D = 0.5, 1, 2 we

also have a smooth change in energy. This change in energy agrees with that exhibited in Nega-

tivity, both of which evidence the 2QPT present if the derivative of these quantities is taken, by

observing an inflection point in them. Considering the other cases of D = 3, 3.5 we can see a sharp

change in energy, which agrees with the behavior of Negativity and QD at the néel curve. And

exactly, the same behavior is observed in the 1QPT in the ferromagnetic transition sector for those

D.

Some relevant things to mention after finishing the numerical work are the following. The quantum

correlations do not necessarily have the maximum of their correlations at the transition point, as

we could see in this spin-1 model, as well as in the Ising model and the XY with a transverse field.

The XXZ spin-1/2 model is the exception in this work. We believe that it is precisely due to this

occurrence that we faced a difficult convergence for the two central sites.
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Figure 5.13: Energy per size vs Delta for the cases of D = 2, 3, 3.5. In this figure, we have 5
different curves. All of them show a sharp break behavior in the 1QPT at Delta < 0, but on
the other hand in the Delta > 0 sector the curves with D = 0.5, 1, 2 show smooth changes in the
energy, which translates into a 2QPT if we look at the energy derivatives. For D = 3, 3.5 we have
an abrupt change.

Related to the numerical aspects of the DMRG algorithm, a relevant detail is that having a

convergent energy value does not necessarily relate to the same convergence accuracy of the local

quantum correlations we study. This is curious because intuitively we might think that the above

is a direct consequence. However, we see that this is not the case when comparing the columns of

the tables 5.2 and 5.1 with the mentioned values of quantum correlation convergence.

To go a little further into the physics of this problem, we want to address the intuition of the ground

state of the system in the ferro- and antiferromagnetic phases. In principle, this is straightforward

for the state in the ferromagnetic phase if we imagine a system of qubits, as traditionally done

since the condition that the spins remain aligned is still fulfilled. However, the topic gets a bit more

interesting when we ask what an antiferromagnetic state means for spin-1. What characterizes an

antiferromagnetic state in qubit systems is that there is zero net magnetization as a consequence

of the antiparallel alignment between neighboring spins. This concept can be fully transferred to

the spin-1 case, but without losing the consideration of the contribution of the subspace mz = 0.

Therefore, if we imagine a bipartite spin-1 system consisting of two sites, we have 32 states that

describe the possible configuration of the system. Using as exceptional notation for each qutrit, the
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Ferromagnetic transition curve.
D Truncation error [10−6]

4.0 6.78× 10−2

3.5 1.01× 10−2

3.0 2.45× 10−2

2.5 9.78× 10−2

2.0 2.32× 10−1

1.5 2.15× 10−1

1.0 7.49× 10−1

0.7 7.08
0.5 8.71× 10−2

0.4 2.99× 10−3

0.3 2.44× 10−4

0.2 3.24× 10−5

0.1 6.38× 10−6

0.0 x× 10−2

−0.1 1.95× 10−3

−0.3 1.45× 10−1

−0.5 1.83× 10−1

−0.7 4.66× 10−1

−1.0 1.25× 10−10

−1.5 3.10
−2.0 8.30
−2.5 5.29

Table 5.1: In this table the truncation error calculated for each QD curve is ordered as D varies,
for the 1QPT ferromagnetic transition. Note that the truncation error is already on the scale of
10−6.

states |−⟩ , |0⟩ , |+⟩ as the eigenstates with eigenvalues mz = −1, 0, 1, the following state represents

an antiferromagnetic spin-1 state

1√
3
(|+−⟩+ |−+⟩+ |00⟩) (5.3.1)

One question we are left wondering when trying to think of the form of the above state is what it

means for the ground state to be in a Large-D phase, too. At the moment what we can answer, is

that since S2
z acts at only one site, when applied to the above-defined basis, the |+⟩ and |−⟩ states

both have eigenvalue equal to 1 for this operator, while |0⟩ has a 0 eigenvalue. So we can say that

depending on the minimization of energy, it can favor the alignment on the z-axis, but without any

particular orientation, or it can promote the |0⟩ eigenstates. Which at first impression lead us to

think in a state with magnetization in z direction different from zero, lower than that which could

be found in the ferromagnetic phase.

44



Néel transition curve.
D Truncation error SP [10−5] Truncation error QPT [10−5]

4.0 - 3.41× 10−1

3.5 - 9.75× 10−1

3.0 - 2.26
2.7 4.30 2.71× 10−1

2.5 3.87 2.15
2.3 2.57 1.29
2.0 1.53 5.99× 10−1

1.7 1.05 4.68× 10−1

1.5 8.76× 10−1 2.21× 10−1

1.3 7.51× 10−1 3.84× 10−1

1.0 6.33× 10−1 3.94× 10−1

0.9 6.10× 10−1 2.93× 10−1

0.8 5.97× 10−1 7.43× 10−1

0.7 5.80× 10−1 6.13× 10−1

0.6 5.90× 10−1 4.04× 10−1

0.5 5.90× 10−1 6.59× 10−1

0.4 6.12× 10−1 3.03× 10−1

0.3 6.20× 10−1 2.66× 10−1

0.2 6.68× 10−1 2.43× 10−1

0.1 7.03× 10−1 4.87× 10−1

0.0 x x× 10−2

−0.1 7.38× 10−1 2.63× 10−1

−0.3 6.69× 10−1 3.06× 10−1

−0.5 6.41× 10−1 5.06× 10−1

−0.7 6.61× 10−1 3.91× 10−1

−1.0 8.51× 10−1 1.07
−1.5 2.42 1.93
−2.0 - 2.58

Table 5.2: In this table the truncation error calculated for each QD curve is ordered as D varies, for
the 2QPT, the Néel-Large-D transition and the symmetric point. Note that the truncation error is
already on the scale of 10−5
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Conclusions

The aim of this work has been to study quantum correlations and quantum phase transitions present

in the Heisenberg XXZ model of spin-1 with single-ion anisotropy, for an infinite one-dimensional

chain with open boundary conditions. This system was simulated using the infinite DMRG numer-

ical technique to obtain the ground state of the system. Using quantum correlation estimators, the

first- and second-order QPTs of the system were detected.

We revisited quantum phase transitions that characterize fundamental models in the condensed

matter area, such as the transverse field model of the Ising model with its 2QPT, the transverse

isotropic XY model with its 1QPT, and the Heisenberg XXZ model with its 1QPT and 2QPT, to

test our computational power with the DMRG algorithm and the optimization program. Taking a

slight deviation from the main objective, we have also studied pure quantum correlations in special

states, such as maximally entangled states that were arranged in an incoherent superposition. This

was performed not only for qubits but also for higher dimensions d = 3 and d = 4. In addition

to the above, finite temperature correlations were studied for a bipartite system of qutrits in the

presence of a magnetic field, reproducing previously published results [54]. This was fruitful for

us to check that our numerical computational tools worked reliably. In the numerical aspect of

the DMRG technique, we simulate the spin chain systems with our algorithm, using 3 different

criteria to verify the correct simulation of the models. The three criteria are the convergence of

the energy per site, the truncation error, and the convergence of the quantum correlations. The

last is represented by the Concurrence in the spin-1/2 case and the naive Concurrence in the spin-1

case. Having established the basis for reliable numerical work, we detected the first and second-

order quantum phase transitions for the spin-1 Heisenberg XXZ model with a single-ion anisotropy

building up the phase diagram based on Quantum Discord, which represents the main original

finding of this thesis, not previously studied in the literature. This result agrees with those found

in references [12, 50] where a different approach was used. Additionally, we also characterized a

new line in the phase diagram, corresponding to the symmetry point (∆, D) = (1, 0), which can

be seen in Figure 5.8. This result extends the result from Malvezzi et. al [17] and Yuste et. al

[12], two papers that were our first approach to the problem. Unlike the work of Yuste [12], where

they characterized the phase diagram only for D ≥ 0 using Negativity in finite chains, our study
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was performed in an infinite one-dimensional chain with open boundary conditions, extending the

study also in the cases of D < 0 and using Quantum Discord. With this correlation estimator it is

possible to appreciate the displacement of the peak at the symmetry point as D is varied.

Natural projections of this work would be to extend our study of quantum correlations to sec-

ond neighbors, to deal with phase transitions involving non-local correlations. We also aim to

study quantum correlations in finite systems with different boundary conditions. Another direction

could be to consider different configurations, which could include not restricting ourselves to one-

dimensional systems. In the strict sense of quantum correlations and quantum phase transitions,

we are interested in simulating other higher spin models to employ our numerical computational

tool, especially those that have been mainly studied by entanglement.
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Appendix A

Appendices of Chapter 2

A.1 Entanglement states generation protocoles

In this appendix, we will develop the main ingredients necessary to generate entangled bipartite

states. As well-known entangled pairs can be generated for qubits, using the Hadamard gate and

a conditional two-qubit gate. The Hadamard gate is defined as the transformation

H =
1√
2

1 1

1 −1


that transform qubit states according to

H |0⟩ = 1√
2
(|0⟩+ |1⟩)

H |1⟩ = 1√
2
(|0⟩ − |1⟩)

We also introduce the conditional operation, usually called CNOT gate, which can be conveniently

defined in terms of the modular addition for binary numbers

|i⟩ |j⟩ −→ |i⟩ |i⊕ j⟩ (A.1.1)

The conditionality is based on changing the state of the second qubit depending on the state of

the first qubit. We denote this conditional operation going from qubit 1 to qubit 2 as C12. This
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operation transforms qubits states according to

|00⟩ −→ |00⟩

|01⟩ −→ |01⟩

|10⟩ −→ |11⟩

|11⟩ −→ |10⟩

Entangled Bell states are obtained by applying the operation C12H1 |i⟩1 |j⟩2.

C12H1 |00⟩ = C12
1√
2
(|0⟩+ |1⟩) |0⟩ = 1√

2
(|00⟩+ |11⟩)

C12H1 |01⟩ = C12
1√
2
(|0⟩+ |1⟩) |1⟩ = 1√

2
(|01⟩+ |10⟩)

C12H1 |10⟩ = C12
1√
2
(|0⟩ − |1⟩) |0⟩ = 1√

2
(|00⟩ − |11⟩)

C12H1 |11⟩ = C12
1√
2
(|0⟩ − |1⟩) |1⟩ = 1√

2
(|01⟩ − |10⟩)

(A.1.2)

Higher dimensions such as spin 1 or 3
2 maximally entangled states can also be generated following

the same recipe for qubits. In such a case, we have to define a generalized Hadamard gate and

conditional gate acting on qudits, instead of qubits. The generalization of the Hadamard gate is

given by the quantum discrete quantum Fourier transform, which is defined as follows

FN |x⟩ = 1√
N

∑
e

2πixk
N |k⟩ (A.1.3)

where N is the dimension of the associated qudit space, |x⟩ is the state to which the transform is

applied, and |k⟩ is the set of qudit states into which the initial state is expanded. In particular, we

observe that the Hadamard gate corresponds to the two-dimensional quantum Fourier transform

F2

F2 |0⟩ =
1√
2
(|0⟩+ |1⟩)

F2 |1⟩ =
1√
2
(|0⟩ − |1⟩)

For qutrits the F3 reads as

F3 =
1√
3


1 1 1

1 eiβ e−iβ

1 e−iβ eiβ
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where the phase β = 2π/3. The nine maximally entangled states for qutrits are

C12F3 |00⟩ =
1√
3
(|00⟩+ |11⟩+ |22⟩)

C12F3 |01⟩ =
1√
3
(|01⟩+ |12⟩+ |20⟩)

C12F3 |02⟩ =
1√
3
(|02⟩+ |10⟩+ |21⟩)

C12F3 |10⟩ =
1√
3
(|00⟩+ eiβ |11⟩+ e−iβ |22⟩)

C12F3 |11⟩ =
1√
3
(|01⟩+ eiβ |12⟩+ e−iβ |20⟩)

C12F3 |12⟩ =
1√
3
(|02⟩+ eiβ |10⟩+ e−iβ |21⟩)

C12F3 |20⟩ =
1√
3
(|00⟩+ e−iβ |11⟩+ eiβ |22⟩)

C12F3 |21⟩ =
1√
3
(|01⟩+ e−iβ |12⟩+ eiβ |20⟩)

C12F3 |22⟩ =
1√
3
(|02⟩+ e−iβ |10⟩+ eiβ |21⟩)

For dimension four we have the F4 of the form

F4 =
1√
4


1 1 1 1

1 i −1 −i

1 −1 1 −1

1 −i −1 i


The sixteen maximally entangled states for quatrts are,

C12F4 |00⟩ =
1√
4
(|00⟩+ |11⟩+ |22⟩+ |33⟩)

C12F4 |01⟩ =
1√
4
(|01⟩+ |12⟩+ |23⟩+ |30⟩)

C12F4 |02⟩ =
1√
4
(|02⟩+ |13⟩+ |20⟩+ |31⟩)

C12F4 |03⟩ =
1√
4
(|03⟩+ |10⟩+ |21⟩+ |32⟩)
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C12F4 |10⟩ =
1√
4
(|10⟩+ i |11⟩ − |22⟩ − i |33⟩)

C12F4 |11⟩ =
1√
4
(|01⟩+ i |12⟩ − |23⟩ − i |30⟩)

C12F4 |12⟩ =
1√
4
(|02⟩+ i |13⟩ − |20⟩ − i |31⟩)

C12F4 |13⟩ =
1√
4
(|03⟩+ i |10⟩ − |21⟩ − i |32⟩)

C12F4 |20⟩ =
1√
4
(|00⟩ − |11⟩+ |22⟩ − |33⟩)

C12F4 |21⟩ =
1√
4
(|01⟩ − |12⟩+ |23⟩ − |30⟩)

C12F4 |22⟩ =
1√
4
(|02⟩ − |13⟩+ |24⟩ − |31⟩)

C12F4 |23⟩ =
1√
4
(|03⟩ − |10⟩+ |20⟩ − |32⟩)

C12F4 |30⟩ =
1√
4
(|00⟩ − i |11⟩ − |22⟩+ i |33⟩)

C12F4 |31⟩ =
1√
4
(|01⟩ − i |12⟩ − |23⟩+ i |30⟩)

C12F4 |32⟩ =
1√
4
(|02⟩ − i |13⟩ − |20⟩+ i |31⟩)

C12F4 |33⟩ =
1√
4
(|03⟩ − i |10⟩ − |21⟩+ i |32⟩)

Now that we have an idea of what the maximally entangled states look like, a mixed state con-

formed by an incoherent superposition of these states is constructed to observe the behavior of the

correlations,

ρd = p
∣∣vd〉 〈vd∣∣+ (1− p)

∣∣vd⊥〉 〈vd⊥∣∣ (A.1.4)

here p plays the role of the mixing probability, varying in the interval [0, 1]. The maximally

entangled states for dimension d are {
∣∣vd〉}.
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Appendix B

Appendices of Chapter 3

B.1 Infinite DMRG in Heisenberg model

This section presents the treatment of the Hamiltonian in equation 4.5.1 for the purposes of the

DMRG algorithm.

The Hamiltonian of the spin 1 XXZ model with single-ion-anisotropy is the following,

H =

N∑
i

{(
Ŝx
i Ŝ

x
i+1 + Ŝy

i Ŝ
y
i+1 +∆Ŝz

i Ŝ
z
i+1

)
+D

(
Ŝz
i

)2}
(B.1.1)

We can identify the local term as D
(
Ŝz
i

)2
and the interacting term as Ŝα

i Ŝ
α
i+1, α = x, y, z. To form

a block of a single site we must write these local operators in their matrix form, as appropriate,

remembering that we are working with spin 1, and also write a local identity matrix for tensor

products,

Sα = Ŝα I = I (B.1.2)

Define the left and right block operators,

BlockSαL = Ŝα

BlockIL = I

BlockHL = DŜz2
i

BlockSαR = Ŝα

BlockIR = I

BlockHR = DŜz2
i

(B.1.3)

and the site operators, for which only the local energy remains to be defined since the others were

defined at the beginning

hL = DŜz2
i hR = DŜz2

i
(B.1.4)
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Now for the LEB, we write it as in equation 3.2.2

BlockHL =BlockHL⊗ I +BlockIL⊗ hL+

(BlockSxL⊗ Sx +BlockSyL⊗ Sy +∆BlockSzL⊗ Sz)
(B.1.5)

We recall writing in the enlarged form the relevant operators,

BlockSαL = BlockIL⊗ Sα

BlockIL = BlockIL⊗ I
(B.1.6)

and likewise for the REB. Finally, following equation 3.2.4, the Hamiltonian of the superblock is

HS =BlockHL⊗BlockIR+BlockIL⊗BlockHR+

(BlockSxL⊗BlockSxR+BlockSyL⊗BlockSyR+

JzBlockSzL⊗BlockSzR)

(B.1.7)

To finish the infinite algorithm, it only remains to diagonalize the Hamiltonian of the superblock

to find the ground state and construct the density matrix to finish steps 4 and 5. As mentioned

before, in this work we are interested in studying the quantum correlations of the central sites of

the chain, so in step 3 of the algorithm, we also trace out the degrees of freedom of the blocks to

obtain the reduced density matrix of the central sites. We store this matrix in the last iteration of

the algorithm for each value of (∆, D) that we simulate.
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